Search results
Results from the WOW.Com Content Network
George Andrews [14] showed that several of Ramanujan's fifth order mock theta functions are equal to quotients Θ(𝜏) / θ(𝜏) where θ(𝜏) is a modular form of weight 1 / 2 and Θ(𝜏) is a theta function of an indefinite binary quadratic form, and Dean Hickerson [15] proved similar results for seventh order mock theta ...
The expression cos x + i sin x is sometimes abbreviated to cis x. The formula is important because it connects complex numbers and trigonometry. By expanding the left hand side and then comparing the real and imaginary parts under the assumption that x is real, it is possible to derive useful expressions for cos nx and sin nx in terms of cos x ...
The real part of the other side is a polynomial in cos x and sin x, in which all powers of sin x are even and thus replaceable through the identity cos 2 x + sin 2 x = 1. By the same reasoning, sin nx is the imaginary part of the polynomial, in which all powers of sin x are odd and thus, if one factor of sin x is factored out, the remaining ...
There are several closely related functions called Jacobi theta functions, and many different and incompatible systems of notation for them. One Jacobi theta function (named after Carl Gustav Jacob Jacobi) is a function defined for two complex variables z and τ, where z can be any complex number and τ is the half-period ratio, confined to the upper half-plane, which means it has a positive ...
Sometimes the probability of "the value of for the parameter value " is written as P(X = x | θ) or P(X = x; θ). The likelihood is the probability that a particular outcome x {\textstyle x} is observed when the true value of the parameter is θ {\textstyle \theta } , equivalent to the probability mass on x {\textstyle x} ; it is not a ...
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.
A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.
n = 1 that yield a minimax approximation or bound for the closely related Q-function: Q(x) ≈ Q̃(x), Q(x) ≤ Q̃(x), or Q(x) ≥ Q̃(x) for x ≥ 0. The coefficients {( a n , b n )} N n = 1 for many variations of the exponential approximations and bounds up to N = 25 have been released to open access as a comprehensive dataset.