Search results
Results from the WOW.Com Content Network
The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution. This is a special case when μ = 0 {\textstyle \mu =0} and σ 2 = 1 {\textstyle \sigma ^{2}=1} , and it is described by this probability density function (or density): φ ( z ) = e − z 2 2 2 π . {\displaystyle \varphi (z ...
Diagram showing the cumulative distribution function for the normal distribution with mean (μ) 0 and variance (σ 2) 1. These numerical values "68%, 95%, 99.7%" come from the cumulative distribution function of the normal distribution. The prediction interval for any standard score z corresponds numerically to (1 − (1 − Φ μ,σ 2 (z)) · 2).
Normal probability plots are made of raw data, residuals from model fits, and estimated parameters. A normal probability plot. In a normal probability plot (also called a "normal plot"), the sorted data are plotted vs. values selected to make the resulting image look close to a straight line if the data are approximately normally distributed.
For a normal distribution with unknown mean and variance, the sample mean and (unbiased) sample variance are the MVUEs for the population mean and population variance. However, the sample standard deviation is not unbiased for the population standard deviation – see unbiased estimation of standard deviation.
This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations).
The normal distribution is the basis for the charts and requires the following assumptions: The quality characteristic to be monitored is adequately modeled by a normally distributed random variable; The parameters μ and σ for the random variable are the same for each unit and each unit is independent of its predecessors or successors
95% of the area under the normal distribution lies within 1.96 standard deviations away from the mean. In probability and statistics , the 97.5th percentile point of the standard normal distribution is a number commonly used for statistical calculations.
If X is a random variable from a normal distribution with mean μ and standard deviation σ, its Z-score may be calculated from X by subtracting μ and dividing by the standard deviation: Z = X − μ σ {\displaystyle Z={\frac {X-\mu }{\sigma }}}