Search results
Results from the WOW.Com Content Network
Criticality accidents are divided into one of two categories: Process accidents, where controls in place to prevent any criticality are breached;; Reactor accidents, which occur due to operator errors or other unintended events (e.g., during maintenance or fuel loading) in locations intended to achieve or approach criticality, such as nuclear power plants, nuclear reactors, and nuclear ...
The demon core (like the core used in the bombing of Nagasaki) was, when assembled, a solid 6.2-kilogram (14 lb) sphere measuring 8.9 centimeters (3.5 in) in diameter.. It consisted of three parts made of plutonium-gallium: two hemispheres and an anti-jet ring, designed to keep neutron flux from "jetting" out of the joined surface between the hemispheres during implosi
The pits of the first nuclear weapons were solid, with an urchin neutron initiator in their center. The Gadget and Fat Man used pits made of 6.2 kg of solid hot pressed plutonium-gallium alloy (at 400 °C and 200 MPa in steel dies – 750 °F and 29,000 psi) half-spheres of 9.2 cm (3.6 in) diameter, with a 2.5 cm (1 in) internal cavity for the initiator.
A nuclear criticality accident occurs from operations that involve fissile material and results in a sudden and potentially lethal release of radiation. Nuclear criticality safety practitioners attempt to prevent nuclear criticality accidents by analyzing normal and credible abnormal conditions in fissile material operations and designing safe ...
A sketch of Louis Slotin's criticality accident used to determine exposure of those in the room at the time. While demonstrating his technique to visiting scientists at Los Alamos, Canadian physicist Louis Slotin manually assembled a critical mass of plutonium. A momentary slip of a screwdriver caused a prompt critical reaction.
During an experiment on August 21, 1945, Daghlian was attempting to build a neutron reflector manually by stacking a set of 4.4-kilogram (9.7 lb) tungsten carbide bricks in an incremental fashion around a plutonium core. The purpose of the neutron reflector was to reduce the mass required for the plutonium core to attain criticality.
Nuclear power plants operate between these two points of reactivity, while above the prompt critical point is the domain of nuclear weapons, pulsed reactors designs such as TRIGA research reactors and the pulsed nuclear thermal rocket, and some nuclear power accidents, such as the 1961 US SL-1 accident and 1986 Soviet Chernobyl disaster.
A critical mass of plutonium emits lethal amounts of neutrons and gamma rays. [156] Plutonium in solution is more likely to form a critical mass than the solid form due to moderation by the hydrogen in water. [dubious – discuss] [18] Criticality accidents have occurred, sometimes killing people.