Search results
Results from the WOW.Com Content Network
Henri Moissan's 1892 record of fluorine gas color, viewed end-on in a 5‑m tube. Air (1) is on the left, fluorine (2) is in the middle, chlorine (3) is on the right. Fluorine forms diatomic molecules (F 2) that are gaseous at room temperature with a density about 1.3 times that of air.
Fluorine is a chemical element; it has symbol F and atomic number 9. It is the lightest halogen [note 1] and exists at standard conditions as pale yellow diatomic gas. Fluorine is extremely reactive as it reacts with all other elements except for the light inert gases. It is highly toxic.
The red line on the chart to the right is the maximum concentration of water vapor expected for a given temperature. The water vapor concentration increases significantly as the temperature rises, approaching 100% (steam, pure water vapor) at 100 °C. However the difference in densities between air and water vapor would still exist (0.598 vs. 1 ...
The Antoine equation is a class of semi-empirical correlations describing the relation between vapor pressure and temperature for pure substances. The Antoine equation is derived from the Clausius–Clapeyron relation. The equation was presented in 1888 by the French engineer Louis Charles Antoine (1825–1897). [1]
The boiling point of water is the temperature at which the saturated vapor pressure equals the ambient pressure. Water supercooled below its normal freezing point has a higher vapor pressure than that of ice at the same temperature and is, thus, unstable. Calculations of the (saturation) vapor pressure of water are commonly used in meteorology.
Hydrogen fluoride does not boil until 20 °C in contrast to the heavier hydrogen halides, which boil between −85 °C (−120 °F) and −35 °C (−30 °F). [ 6 ] [ 7 ] [ 8 ] This hydrogen bonding between HF molecules gives rise to high viscosity in the liquid phase and lower than expected pressure in the gas phase.
However, its empirical value remains important: the unique combination of pressure and temperature at which liquid water, solid ice, and water vapor coexist in a stable equilibrium is approximately 273.16 ± 0.0001 K [4] and a vapor pressure of 611.657 pascals (6.11657 mbar; 0.00603659 atm).
where temperature T is in degrees Celsius (°C) and saturation vapor pressure P is in kilopascals (kPa). According to Monteith and Unsworth, "Values of saturation vapour pressure from Tetens' formula are within 1 Pa of exact values up to 35 °C." Murray (1967) provides Tetens' equation for temperatures below 0 °C: [3]