enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron mobility - Wikipedia

    en.wikipedia.org/wiki/Electron_mobility

    In solid-state physics, the electron mobility characterises how quickly an electron can move through a metal or semiconductor when pushed or pulled by an electric field. There is an analogous quantity for holes, called hole mobility. The term carrier mobility refers in general to both electron and hole mobility.

  3. Semiconductor characterization techniques - Wikipedia

    en.wikipedia.org/wiki/Semiconductor...

    Semiconductor characterization techniques are used to characterize a semiconductor material or device (p–n junction, Schottky diode, solar cell, etc.).Some examples of semiconductor properties that could be characterized include the depletion width, carrier concentration, carrier generation and recombination rates, carrier lifetimes, defect concentration, and trap states.

  4. Saturation velocity - Wikipedia

    en.wikipedia.org/wiki/Saturation_velocity

    The proportionality constant is known as mobility of the carrier, which is a material property. A good conductor would have a high mobility value for its charge carrier, which means higher velocity, and consequently higher current values for a given electric field strength. There is a limit though to this process and at some high field value, a ...

  5. Electrical mobility - Wikipedia

    en.wikipedia.org/wiki/Electrical_mobility

    Electrical mobility is the ability of charged particles (such as electrons or protons) to move through a medium in response to an electric field that is pulling them. The separation of ions according to their mobility in gas phase is called ion mobility spectrometry, in liquid phase it is called electrophoresis.

  6. High-electron-mobility transistor - Wikipedia

    en.wikipedia.org/wiki/High-electron-mobility...

    The invention of the high-electron-mobility transistor (HEMT) is usually attributed to physicist Takashi Mimura (三村 高志), while working at Fujitsu in Japan. [4] The basis for the HEMT was the GaAs (gallium arsenide) MOSFET (metal–oxide–semiconductor field-effect transistor), which Mimura had been researching as an alternative to the standard silicon (Si) MOSFET since 1977.

  7. Drift current - Wikipedia

    en.wikipedia.org/wiki/Drift_current

    Drift current is the electric current caused by particles getting pulled by an electric field. The term is most commonly used in the context of electrons and holes in semiconductors, although the same concept also applies to metals, electrolytes, and so on.

  8. At Politecnico di Torino Industry and academic players ...

    lite.aol.com/tech/story/0022/20241118/9275523.htm

    TURIN, Italy, Nov. 18, 2024 (GLOBE NEWSWIRE) -- Electric and hybrid vehicles, batteries, components: the frontiers of research in the field of sustainable transport embrace different and complementary disciplines, all at the forefront in the research of Politecnico di Torino, which is relaunching its solid tradition in the transport sector looking to the future of mobility.

  9. Charge transport mechanisms - Wikipedia

    en.wikipedia.org/wiki/Charge_transport_mechanisms

    Generally, the carrier mobility μ depends on temperature T, on the applied electric field E, and the concentration of localized states N. Depending on the model, increased temperature may either increase or decrease carrier mobility, applied electric field can increase mobility by contributing to thermal ionization of trapped charges, and ...