Search results
Results from the WOW.Com Content Network
The temperature of the lower mantle ranges from 1,960 K (1,690 °C; 3,070 °F) at the topmost layer to 2,630 K (2,360 °C; 4,270 °F) at a depth of 2,700 kilometres (1,700 mi). [3] Models of the temperature of the lower mantle approximate convection as the primary heat transport contribution, while conduction and radiative heat transfer are ...
Earth's mantle extends to a depth of 2,890 km (1,800 mi), making it the planet's thickest layer. [20] [This is 45% of the 6,371 km (3,959 mi) radius, and 83.7% of the volume - 0.6% of the volume is the crust]. The mantle is divided into upper and lower mantle [21] separated by a transition zone. [22]
The internal structure of Earth. Earth's mantle is a layer of silicate rock between the crust and the outer core.It has a mass of 4.01 × 10 24 kg (8.84 × 10 24 lb) and makes up 67% of the mass of Earth. [1]
Simplified model of mantle convection: [1] Whole-mantle convection. Mantle convection is the very slow creep of Earth's solid silicate mantle as convection currents carry heat from the interior to the planet's surface. [2] [3] Mantle convection causes tectonic plates to move around the Earth's surface. [4]
In his 1942 publication of his model, the entire lower mantle was the D layer. In 1949, Bullen found his 'D' layer to actually be two different layers. The upper part of the D layer, about 1,800 km thick, was renamed D′ (D prime) and the lower part (the bottom 200 km) was named D″. [4] Later it was found that D" is non-spherical. [5]
The transition zone is the part of Earth's mantle that is located between the lower and the upper mantle, most strictly between the seismic-discontinuity depths of about 410 to 660 kilometres (250 to 410 mi), but more broadly defined as the zone encompassing those discontinuities, i.e., between about 300 and 850 kilometres (190 and 530 mi) depth. [1]
Mantle convection is the result of a thermal gradient: the lower mantle is hotter than the upper mantle, and is therefore less dense. This sets up two primary types of instabilities. In the first type, plumes rise from the lower mantle, and corresponding unstable regions of lithosphere drip back into the mantle.
Earth's outer core is a fluid layer about 2,260 km (1,400 mi) thick, composed of mostly iron and nickel that lies above Earth's solid inner core and below its mantle. [ 1 ] [ 2 ] [ 3 ] The outer core begins approximately 2,889 km (1,795 mi) beneath Earth's surface is at the core-mantle boundary and ends 5,150 km (3,200 mi) beneath Earth's ...