Search results
Results from the WOW.Com Content Network
The lower mantle, historically also known as the mesosphere, represents approximately 56% of Earth's total volume, and is the region from 660 to 2900 km below Earth's surface; between the transition zone and the outer core. [1]
The lower mantle is composed primarily of bridgmanite and ferropericlase, with minor amounts of calcium perovskite, calcium-ferrite structured oxide, and stishovite ...
The mantle is divided into upper and lower mantle [21] separated by a transition zone. [22] The lowest part of the mantle next to the core-mantle boundary is known as the D″ (D-double-prime) layer. [23] The pressure at the bottom of the mantle is ≈140 GPa (1.4 Matm). [24]
Accretion occurs as mantle is added to the growing edges of a plate, associated with seafloor spreading. Upwelling beneath the spreading centers is a shallow, rising component of mantle convection and in most cases not directly linked to the global mantle upwelling.
The transition zone is the part of Earth's mantle that is located between the lower and the upper mantle, most strictly between the seismic-discontinuity depths of about 410 to 660 kilometres (250 to 410 mi), but more broadly defined as the zone encompassing those discontinuities, i.e., between about 300 and 850 kilometres (190 and 530 mi) depth. [1]
Slab suction is weaker than slab pull, which is the strongest of the driving forces. When measuring the forces of these two mechanisms, slab pull in subducting plate boundaries for upper mantle slabs is 1.9 × 10^21 N. [clarification needed] In comparison slab suction in the upper and lower mantle totaled 1.6 × 10^21 N. [3]
Earth's outer core is a fluid layer about 2,260 km (1,400 mi) thick, composed of mostly iron and nickel that lies above Earth's solid inner core and below its mantle. [ 1 ] [ 2 ] [ 3 ] The outer core begins approximately 2,889 km (1,795 mi) beneath Earth's surface is at the core-mantle boundary and ends 5,150 km (3,200 mi) beneath Earth's ...
The silicate mantle of the Earth's moon is approximately 1300–1400 km thick, and is the source of mare basalts. [4] The lunar mantle might be exposed in the South Pole-Aitken basin or the Crisium basin. [4] The lunar mantle contains a seismic discontinuity at ~500 kilometers (310 miles) depth, most likely related to a change in composition. [4]