enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  3. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Moreover, if the entire vector space V can be spanned by the eigenvectors of T, or equivalently if the direct sum of the eigenspaces associated with all the eigenvalues of T is the entire vector space V, then a basis of V called an eigenbasis can be formed from linearly independent eigenvectors of T.

  4. SLEPc - Wikipedia

    en.wikipedia.org/wiki/SLEPc

    SLEPc [1] is a software library for the parallel computation of eigenvalues and eigenvectors of large, sparse matrices. It can be seen as a module of PETSc that provides solvers for different types of eigenproblems, including linear (standard and generalized) and nonlinear ( quadratic , polynomial and general ), as well as the SVD .

  5. Rayleigh–Ritz method - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Ritz_method

    It is used in all applications that involve approximating eigenvalues and eigenvectors, often under different names. In quantum mechanics , where a system of particles is described using a Hamiltonian , the Ritz method uses trial wave functions to approximate the ground state eigenfunction with the lowest energy.

  6. Divide-and-conquer eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Divide-and-conquer_eigen...

    The remainder of the divide step is to solve for the eigenvalues (and if desired the eigenvectors) of ^ and ^, that is to find the diagonalizations ^ = and ^ =. This can be accomplished with recursive calls to the divide-and-conquer algorithm, although practical implementations often switch to the QR algorithm for small enough submatrices.

  7. QR algorithm - Wikipedia

    en.wikipedia.org/wiki/QR_algorithm

    In numerical linear algebra, the QR algorithm or QR iteration is an eigenvalue algorithm: that is, a procedure to calculate the eigenvalues and eigenvectors of a matrix.The QR algorithm was developed in the late 1950s by John G. F. Francis and by Vera N. Kublanovskaya, working independently.

  8. Arnoldi iteration - Wikipedia

    en.wikipedia.org/wiki/Arnoldi_iteration

    In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.

  9. Inverse iteration - Wikipedia

    en.wikipedia.org/wiki/Inverse_iteration

    Calculating the inverse matrix once, and storing it to apply at each iteration is of complexity O(n 3) + k O(n 2). Storing an LU decomposition of ( A − μ I ) {\displaystyle (A-\mu I)} and using forward and back substitution to solve the system of equations at each iteration is also of complexity O ( n 3 ) + k O ( n 2 ).