Search results
Results from the WOW.Com Content Network
In mathematics, the infimum (abbreviated inf; pl.: infima) of a subset of a partially ordered set is the greatest element in that is less than or equal to each element of , if such an element exists. [1] If the infimum of exists, it is unique, and if b is a lower bound of , then b is less than or equal to the infimum of .
Define [1] = {: =} and = {: =}, where the expressions inside the brackets on the right are, respectively, the limit infimum and limit supremum of the real-valued sequence (). Again, if these two sets are equal, then the set-theoretic limit of the sequence A n {\displaystyle A_{n}} exists and is equal to that common set, and either set as ...
In mathematics, the least-upper-bound property (sometimes called completeness, supremum property or l.u.b. property) [1] is a fundamental property of the real numbers. More generally, a partially ordered set X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound (supremum) in X .
It is the greatest element of B and hence the infimum of X. In a dual way, the existence of all infima implies the existence of all suprema. Bounded completeness can also be characterized differently. By an argument similar to the above, one finds that the supremum of a set with upper bounds is the infimum of the set of upper bounds.
In mathematical analysis, limit superior and limit inferior are important tools for studying sequences of real numbers.Since the supremum and infimum of an unbounded set of real numbers may not exist (the reals are not a complete lattice), it is convenient to consider sequences in the affinely extended real number system: we add the positive and negative infinities to the real line to give the ...
Then f preserves the supremum of S if the set f(S) = {f(x) | x in S} has a least upper bound in Q which is equal to f(s), i.e. f(sup S) = sup f(S) This definition consists of two requirements: the supremum of the set f(S) exists and it is equal to f(s). This corresponds to the abovementioned parallel to category theory, but is not always ...
An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor.
Exactly in the same way one defines the essential infimum as the supremum of the essential lower bound s, that is, = {: ({: <}) =} if the set of essential lower bounds is nonempty, and as otherwise; again there is an alternative expression as = {: ()} (with this being if the set is empty).