Search results
Results from the WOW.Com Content Network
Figure 1. Example of a biological network between genes and proteins that controls entry into S phase. However, with knowledge of network interactions and a set of parameters for the proteins and protein interactions (usually obtained through empirical research), it is often possible to construct a model of the network as a dynamical system.
The cell cycle is a series of complex, ordered, sequential events that control how a single cell divides into two cells, and involves several different phases. The phases include the G1 and G2 phases, DNA replication or S phase, and the actual process of cell division, mitosis or M phase. [1]
Mass extinctions are characterized by the loss of at least 75% of species within a geologically short period of time (i.e., less than 2 million years). [18] [51] The Holocene extinction is also known as the "sixth extinction", as it is possibly the sixth mass extinction event, after the Ordovician–Silurian extinction events, the Late Devonian extinction, the Permian–Triassic extinction ...
The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.
At the peak of the cyclin, attached to the cyclin dependent kinases this system pushes the cell out of interphase and into the M phase, where mitosis, meiosis, and cytokinesis occur. [19] There are three transition checkpoints the cell has to go through before entering the M phase. The most important being the G 1-S transition checkpoint. If ...
Within the field of developmental biology, one goal is to understand how a particular cell develops into a final cell type, known as fate determination.Within an embryo, several processes play out at the cellular and tissue level to create an organism.
Colloidal phase separation as a driving force in cellular organisation appealed strongly to Stephane Leduc, who wrote in his influential 1911 book The Mechanism of Life: "Hence the study of life may be best begun by the study of those physico-chemical phenomena which result from the contact of two different liquids. Biology is thus but a branch ...
Evolutionary biology, in particular the understanding of how organisms evolve through natural selection, is an area of science with many practical applications. [1] [2] Creationists often claim that the theory of evolution lacks any practical applications; however, this claim has been refuted by scientists.