enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Magnetic circuit - Wikipedia

    en.wikipedia.org/wiki/Magnetic_circuit

    Most importantly, magnetic circuits are nonlinear; the reluctance in a magnetic circuit is not constant, as resistance is, but varies depending on the magnetic field. At high magnetic fluxes the ferromagnetic materials used for the cores of magnetic circuits saturate , limiting further increase of the magnetic flux through, so above this level ...

  3. Permeability (electromagnetism) - Wikipedia

    en.wikipedia.org/wiki/Permeability...

    Paramagnetic materials are attracted to magnetic fields, hence have a relative magnetic permeability greater than one (or, equivalently, a positive magnetic susceptibility). The magnetic moment induced by the applied field is linear in the field strength, and it is rather weak. It typically requires a sensitive analytical balance to detect the ...

  4. Magnetic reluctance - Wikipedia

    en.wikipedia.org/wiki/Magnetic_reluctance

    Magnetic reluctance, or magnetic resistance, is a concept used in the analysis of magnetic circuits. It is defined as the ratio of magnetomotive force (mmf) to magnetic flux . It represents the opposition to magnetic flux, and depends on the geometry and composition of an object.

  5. Vacuum permeability - Wikipedia

    en.wikipedia.org/wiki/Vacuum_permeability

    The vacuum magnetic permeability (variously vacuum permeability, permeability of free space, permeability of vacuum, magnetic constant) is the magnetic permeability in a classical vacuum. It is a physical constant , conventionally written as μ 0 (pronounced "mu nought" or "mu zero").

  6. Gyrator–capacitor model - Wikipedia

    en.wikipedia.org/wiki/Gyrator–capacitor_model

    Magnetic circuits are nonlinear; the permeance in a magnetic circuit is not constant, unlike capacitance in an electrical circuit, but varies depending on the magnetic field. At high magnetic fluxes the ferromagnetic materials used for the cores of magnetic circuits saturate , limiting further increase of the magnetic flux, so above this level ...

  7. Ampère's circuital law - Wikipedia

    en.wikipedia.org/wiki/Ampère's_circuital_law

    It determines the magnetic field associated with a given current, or the current associated with a given magnetic field. The original circuital law only applies to a magnetostatic situation, to continuous steady currents flowing in a closed circuit. For systems with electric fields that change over time, the original law (as given in this ...

  8. Electromagnet - Wikipedia

    en.wikipedia.org/wiki/Electromagnet

    The magnetic field lines of a current-carrying loop of wire pass through the center of the loop, concentrating the field there. Magnetic field generated by passing a current through a coil. An electric current flowing in a wire creates a magnetic field around the wire, due to Ampere's law (see drawing of wire with magnetic field).

  9. Permeance - Wikipedia

    en.wikipedia.org/wiki/Permeance

    In electromagnetism, permeance is the inverse of reluctance.In a magnetic circuit, permeance is a measure of the quantity of magnetic flux for a number of current-turns. A magnetic circuit almost acts as though the flux is conducted, therefore permeance is larger for large cross-sections of a material and smaller for smaller cross section lengths.