enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    Recurrent neural networks (RNNs) are a class of artificial neural network commonly used for sequential data processing. Unlike feedforward neural networks , which process data in a single pass, RNNs process data across multiple time steps, making them well-adapted for modelling and processing text, speech, and time series .

  3. Bidirectional recurrent neural networks - Wikipedia

    en.wikipedia.org/wiki/Bidirectional_recurrent...

    For example, multilayer perceptron (MLPs) and time delay neural network (TDNNs) have limitations on the input data flexibility, as they require their input data to be fixed. Standard recurrent neural network (RNNs) also have restrictions as the future input information cannot be reached from the current state. On the contrary, BRNNs do not ...

  4. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models , and other sequence learning methods.

  5. Backpropagation through time - Wikipedia

    en.wikipedia.org/wiki/Backpropagation_through_time

    BPTT begins by unfolding a recurrent neural network in time. The unfolded network contains k {\displaystyle k} inputs and outputs, but every copy of the network shares the same parameters. Then, the backpropagation algorithm is used to find the gradient of the loss function with respect to all the network parameters.

  6. Recursive neural network - Wikipedia

    en.wikipedia.org/wiki/Recursive_neural_network

    Recurrent neural networks are recursive artificial neural networks with a certain structure: that of a linear chain. Whereas recursive neural networks operate on any hierarchical structure, combining child representations into parent representations, recurrent neural networks operate on the linear progression of time, combining the previous time step and a hidden representation into the ...

  7. Out-of-bag error - Wikipedia

    en.wikipedia.org/wiki/Out-of-bag_error

    When bootstrap aggregating is performed, two independent sets are created. One set, the bootstrap sample, is the data chosen to be "in-the-bag" by sampling with replacement.

  8. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    An artificial neural network (ANN) combines biological principles with advanced statistics to solve problems in domains such as pattern recognition and game-play. ANNs adopt the basic model of neuron analogues connected to each other in a variety of ways.

  9. Gated recurrent unit - Wikipedia

    en.wikipedia.org/wiki/Gated_recurrent_unit

    Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014 by Kyunghyun Cho et al. [1] The GRU is like a long short-term memory (LSTM) with a gating mechanism to input or forget certain features, [2] but lacks a context vector or output gate, resulting in fewer parameters than LSTM. [3]