Search results
Results from the WOW.Com Content Network
In computer science, an optimal binary search tree (Optimal BST), sometimes called a weight-balanced binary tree, [1] is a binary search tree which provides the smallest possible search time (or expected search time) for a given sequence of accesses (or access probabilities). Optimal BSTs are generally divided into two types: static and dynamic.
Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies:
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
A Binary Search Tree is a node-based data structure where each node contains a key and two subtrees, the left and right. For all nodes, the left subtree's key must be less than the node's key, and the right subtree's key must be greater than the node's key. These subtrees must all qualify as binary search trees.
This unsorted tree has non-unique values (e.g., the value 2 existing in different nodes, not in a single node only) and is non-binary (only up to two children nodes per parent node in a binary tree). The root node at the top (with the value 2 here), has no parent as it is the highest in the tree hierarchy.
When inserting a node into an AVL tree, you initially follow the same process as inserting into a Binary Search Tree. If the tree is empty, then the node is inserted as the root of the tree. If the tree is not empty, then we go down the root, and recursively go down the tree searching for the location to insert the new node.
As with any binary search tree, the inorder traversal order of the nodes is the same as the sorted order of the keys. The structure of the tree is determined by the requirement that it be heap-ordered: that is, the priority number for any non-leaf node must be greater than or equal to the priority of its children.
A tree sort is a sort algorithm that builds a binary search tree from the elements to be sorted, and then traverses the tree so that the elements come out in sorted order. [1] Its typical use is sorting elements online : after each insertion, the set of elements seen so far is available in sorted order.