Search results
Results from the WOW.Com Content Network
Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.
English: Drag coefficient C d for a sphere as a function of Reynolds number Re, as obtained from laboratory experiments. The dark line is for a sphere with a smooth surface, while the lighter-colored line is for the case of a rough surface. The numbers along the line indicate several flow regimes and associated changes in the drag coefficient:
Hoerner fluid dynamic drag coefficients Image title Table of drag coefficients of assorted prisms between walls (right column) and rounded shapes (left column) at Reynolds numbers between 10000 and 1000000 with flow from the left, from Fluid Dynamic Drag by Sighard Hoerner, redrawn, reordered and scaled to the same projected frontal area by CMG ...
is the drag coefficient – a dimensionless coefficient related to the object's geometry and taking into account both skin friction and form drag. If the fluid is a liquid, c d {\displaystyle c_{\rm {d}}} depends on the Reynolds number ; if the fluid is a gas, c d {\displaystyle c_{\rm {d}}} depends on both the Reynolds number and the Mach number .
Drag coefficient C d for a sphere as a function of Reynolds number Re, as obtained from laboratory experiments. The dark line is for a sphere with a smooth surface, while the lighter line is for the case of a rough surface. Drag depends on the properties of the fluid and on the size, shape, and speed of the object.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The first phase, she said, revealed a preliminary inventory of more than 2,000 water service lines in the town's utility customer base. About 900 of those are estimated to be located in the ...
In mechanics and aerodynamics, the drag area of an object represents the effective size of the object as it is "seen" by the fluid flow around it. The drag area is usually expressed as a product , where is a representative area of the object, and is the drag coefficient, which represents what shape it has and how streamlined it is.