Search results
Results from the WOW.Com Content Network
An illustration of Stokes' theorem, with surface Σ, its boundary ∂Σ and the normal vector n.The direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule (i.e., the right hand the fingers circulate along ∂Σ and the thumb is directed along n).
In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.
Stokes boundary layer due to the sinusoidal oscillation of the far-field flow velocity. The horizontal velocity is the blue line, and the corresponding horizontal particle excursions are the red dots.
When the outer Soddy circle has negative curvature, its center is the isoperimetric point of the triangle: the three triangles formed by this center and two vertices of the starting triangle all have the same perimeter. [4] Triangles whose outer Soddy circle degenerates to a straight line with curvature zero have been called "Soddyian triangles ...
In geometry, an isosceles triangle (/ aɪ ˈ s ɒ s ə l iː z /) is a triangle that has two sides of equal length or two angles of equal measure. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case.
Stokes' law is the basis of the falling-sphere viscometer, in which the fluid is stationary in a vertical glass tube. A sphere of known size and density is allowed to descend through the liquid. If correctly selected, it reaches terminal velocity, which can be measured by the time it takes to pass two marks on the tube.
In order to find the weak form of the Navier–Stokes equations, firstly, consider the momentum equation [20] + + = multiply it for a test function , defined in a suitable space , and integrate both members with respect to the domain : [20] + + = Counter-integrating by parts the diffusive and the pressure terms and by using the Gauss' theorem ...
An equilateral triangle is a triangle that has three equal sides. It is a special case of an isosceles triangle in the modern definition, stating that an isosceles triangle is defined at least as having two equal sides. [1] Based on the modern definition, this leads to an equilateral triangle in which one of the three sides may be considered ...