enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    Based on this sample, the estimated population mean is 10, and the unbiased estimate of population variance is 30. Both the naïve algorithm and two-pass algorithm compute these values correctly. Next consider the sample (10 8 + 4, 10 8 + 7, 10 8 + 13, 10 8 + 16), which gives rise to the same estimated variance as the first sample. The two-pass ...

  3. Bessel's correction - Wikipedia

    en.wikipedia.org/wiki/Bessel's_correction

    In estimating the population variance from a sample when the population mean is unknown, the uncorrected sample variance is the mean of the squares of deviations of sample values from the sample mean (i.e., using a multiplicative factor 1/n). In this case, the sample variance is a biased estimator of the population variance. Multiplying the ...

  4. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    If the set is a sample from the whole population, then the unbiased sample variance can be calculated as 1017.538 that is the sum of the squared deviations about the mean of the sample, divided by 11 instead of 12. A function VAR.S in Microsoft Excel gives the unbiased sample variance while VAR.P is for population variance.

  5. Sampling distribution - Wikipedia

    en.wikipedia.org/wiki/Sampling_distribution

    In statistics, a sampling distribution or finite-sample distribution is the probability distribution of a given random-sample-based statistic.If an arbitrarily large number of samples, each involving multiple observations (data points), were separately used to compute one value of a statistic (such as, for example, the sample mean or sample variance) for each sample, then the sampling ...

  6. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies ...

  7. Cochran's C test - Wikipedia

    en.wikipedia.org/wiki/Cochran's_C_test

    Cochran's test, [1] named after William G. Cochran, is a one-sided upper limit variance outlier statistical test .The C test is used to decide if a single estimate of a variance (or a standard deviation) is significantly larger than a group of variances (or standard deviations) with which the single estimate is supposed to be comparable.

  8. Squared deviations from the mean - Wikipedia

    en.wikipedia.org/wiki/Squared_deviations_from...

    The sum of squared deviations needed to calculate sample variance (before deciding whether to divide by n or n − 1) is most easily calculated as = From the two derived expectations above the expected value of this sum is

  9. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    This results in an approximately-unbiased estimator for the variance of the sample mean. [48] This means that samples taken from the bootstrap distribution will have a variance which is, on average, equal to the variance of the total population. Histograms of the bootstrap distribution and the smooth bootstrap distribution appear below.