Search results
Results from the WOW.Com Content Network
There is significant differences among sample averages; The observed differences among sample averages could not be reasonably caused by random chance itself; The result is statistically significant; Note that when there are only two groups for the one-way ANOVA F-test, = where t is the Student's statistic.
In statistics, one-way analysis of variance (or one-way ANOVA) is a technique to compare whether two or more samples' means are significantly different (using the F distribution). This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way".
Analysis of variance (ANOVA) is a family of statistical methods used to compare the means of two or more groups by analyzing variance. Specifically, ANOVA compares the amount of variation between the group means to the amount of variation within each group. If the between-group variation is substantially larger than the within-group variation ...
It can be used to correctly interpret the statistical significance of the difference between means that have been selected for comparison because of their extreme values. The method was initially developed and introduced by John Tukey for use in Analysis of Variance (ANOVA), and usually has only been taught in connection with ANOVA.
Andy Field (2009) [1] provided an example of a mixed-design ANOVA in which he wants to investigate whether personality or attractiveness is the most important quality for individuals seeking a partner. In his example, there is a speed dating event set up in which there are two sets of what he terms "stooge dates": a set of males and a set of ...
The new multiple range test proposed by Duncan makes use of special protection levels based upon degrees of freedom.Let , = be the protection level for testing the significance of a difference between two means; that is, the probability that a significant difference between two means will not be found if the population means are equal.
A significant omnibus F test in ANOVA procedure, is an in advance requirement before conducting the Post Hoc comparison, otherwise those comparisons are not required. If the omnibus test fails to find significant differences between all means, it means that no difference has been found between any combinations of the tested means.
To determine if there is a significant difference between two means with equal sample sizes, the Newman–Keuls method uses a formula that is identical to the one used in Tukey's range test, which calculates the q value by taking the difference between two sample means and dividing it by the standard error: