Search results
Results from the WOW.Com Content Network
A number of different Markov models of DNA sequence evolution have been proposed. [1] These substitution models differ in terms of the parameters used to describe the rates at which one nucleotide replaces another during evolution. These models are frequently used in molecular phylogenetic analyses.
The principal forces of evolution in prokaryotes and their effects on archaeal and bacterial genomes. The horizontal line shows archaeal and bacterial genome size on a logarithmic scale (in megabase pairs) and the approximate corresponding number of genes (in parentheses).The effects of the main forces of prokaryotic genome evolution are denoted by triangles that are positioned, roughly, over ...
Indexes the genome with periodic seeds to quickly find alignments with full sensitivity up to four mismatches. It can map Illumina and SOLiD reads. Unlike most mapping programs, speed increases for longer read lengths. Yes Free, GPL [49] PRIMEX Indexes the genome with a k-mer lookup table with full sensitivity up to an adjustable number of ...
In biology, a substitution model, also called models of sequence evolution, are Markov models that describe changes over evolutionary time. These models describe evolutionary changes in macromolecules, such as DNA sequences or protein sequences, that can be represented as sequence of symbols (e.g., A, C, G, and T in the case of DNA or the 20 "standard" proteinogenic amino acids in the case of ...
Gene conversion is the process by which one DNA sequence replaces a homologous sequence such that the sequences become identical after the conversion. [1] Gene conversion can be either allelic, meaning that one allele of the same gene replaces another allele, or ectopic, meaning that one paralogous DNA sequence converts another.
Ohno presented the first version of the 2R hypothesis as part of his larger argument for the general importance of gene duplication in evolution.Based on relative genome sizes and isozyme analysis, he suggested that ancestral fish or amphibians had undergone at least one and possibly more cases of "tetraploid evolution".
Molecular evolution describes how inherited DNA and/or RNA change over evolutionary time, and the consequences of this for proteins and other components of cells and organisms. Molecular evolution is the basis of phylogenetic approaches to describing the tree of life. Molecular evolution overlaps with population genetics, especially on shorter ...
Concerted evolution (phenomenon of duplicated genes) may often be caused by the genetic exchange known as gene conversion. [3] This other phenomenon is known as the "non-reciprocal exchange of genetic material between homologous sequences." [3] Gene conservation can do a few things... Decrease mutational load; Eliminate deleterious mutations