Search results
Results from the WOW.Com Content Network
For example, sodium hydroxide, NaOH, is a strong base. NaOH(aq) → Na + (aq) + OH − (aq) Therefore, when a strong acid reacts with a strong base the neutralization reaction can be written as H + + OH − → H 2 O. For example, in the reaction between hydrochloric acid and sodium hydroxide the sodium and chloride ions, Na + and Cl − take ...
Sodium hydroxide, also known as lye and caustic soda, [1] [2] is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations Na + and hydroxide anions OH −. Sodium hydroxide is a highly corrosive base and alkali that decomposes lipids and proteins at ambient temperatures and may cause severe ...
The aqueous solution in the classical reaction contains glucose, sodium hydroxide and methylene blue. [14] In the first step an acyloin of glucose is formed. The next step is a redox reaction of the acyloin with methylene blue in which the glucose is oxidized to diketone in alkaline solution [6] and methylene blue is reduced to colorless leucomethylene blue.
A weak acid like boric acid (H 3 BO 3) in excess of ammonia is often used. Standardized HCl, H 2 SO 4 or some other strong acid can be used instead, but this is less commonplace. The sample solution is then distilled with a small amount of sodium hydroxide (NaOH). [3] NaOH can also be added with a dropping funnel. [4]
The hydroxide anion adds to the carbonyl group of the ester. The immediate product is called an orthoester. Saponification part I. Expulsion of the alkoxide generates a carboxylic acid: Saponification part II. The alkoxide ion is a strong base so the proton is transferred from the carboxylic acid to the alkoxide ion, creating an alcohol:
An example of a secondary standard is sodium hydroxide, a hydroscopic compound that is highly reactive with its surroundings. The concentration of a standard solution made with sodium hydroxide may fluctuate overtime due to the instability of the compound, requiring for calibration using a primary standard before use. [3] [5]
The tert-butyloxycarbonyl protecting group or tert-butoxycarbonyl protecting group [1] (BOC group) is an acid-labile protecting group used in organic synthesis. The BOC group can be added to amines under aqueous conditions using di-tert-butyl dicarbonate in the presence of a base such as sodium hydroxide:
The Ripper Method, developed in 1898, [1] is an analytical chemistry technique used to determine the total amount of sulfur dioxide (SO 2) in a solution.This technique uses iodine standard and a starch indicator to titrate the solution and determine the concentration of free SO 2.