Search results
Results from the WOW.Com Content Network
Since the Hamming distance between "000" and "111" is 3, and those comprise the entire set of codewords in the code, the minimum Hamming distance is 3, which satisfies 2k+1 = 3. Thus a code with minimum Hamming distance d between its codewords can detect at most d-1 errors and can correct ⌊(d-1)/2⌋ errors. [2]
In other words, the minimal Hamming distance between any two correct codewords is 3, ... (modulo 2) to a codeword of Hamming(7,4), and rescaling by 1/ ...
Linearity guarantees that the minimum Hamming distance d between a codeword c 0 and any of the other codewords c ≠ c 0 is independent of c 0. This follows from the property that the difference c − c 0 of two codewords in C is also a codeword (i.e., an element of the subspace C), and the property that d(c, c 0) = d(c − c 0, 0). These ...
Hamming also noticed the problems with flipping two or more bits, and described this as the "distance" (it is now called the Hamming distance, after him). Parity has a distance of 2, so one bit flip can be detected but not corrected, and any two bit flips will be invisible.
where (,) is the Hamming distance between and . The expression (,) represents the maximum number of possible codewords in a binary code of length and minimum distance . The Plotkin bound places a limit on this expression.
The distance of a code is the minimum Hamming distance between any two distinct codewords, i.e., the minimum number of positions at which two distinct codewords differ. Since the Walsh–Hadamard code is a linear code, the distance is equal to the minimum Hamming weight among all of its non-zero codewords.
The minimum distance of a set of codewords of length is defined as = {,:} (,) where (,) is the Hamming distance between and .The expression (,) represents the maximum number of possible codewords in a -ary block code of length and minimum distance .
A typical example of linear code is the Hamming code. Codes defined via a Hamming space necessarily have the same length for every codeword, so they are called block codes when it is necessary to distinguish them from variable-length codes that are defined by unique factorization on a monoid. The Hamming distance endows a Hamming space with a ...