Search results
Results from the WOW.Com Content Network
If sphere 2 is very large such that , hence and , which is the case for a spherical cap with a base that has a negligible curvature, the above equation is equal to the volume of a spherical cap with a flat base, as expected.
The surface area of the sphere satisfies a proportionality equation similar to the one for the volume of a ball: If A n − 1 (r) is the surface area of an (n − 1)-sphere of radius r, then: = (). Applying this to the above integral gives the expression
If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is =. This may also be written as V = 2 π r 3 3 ( 1 − cos φ ) , {\displaystyle V={\frac {2\pi r^{3}}{3}}(1-\cos \varphi )\,,} where φ is half the cone aperture angle, i.e., φ is the angle between the rim of the cap and the ...
An approximation for the volume of a thin spherical shell is the surface area of the inner sphere multiplied by the thickness t of the shell: [2] V ≈ 4 π r 2 t , {\displaystyle V\approx 4\pi r^{2}t,}
For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system—shown here in the mathematics convention—the sphere is adapted as a unit sphere, where the radius is set to unity and then can generally be ignored ...
The formula for the volume of the -ball can be derived from this by integration. Similarly the surface area element of the ( n − 1 ) {\displaystyle (n-1)} -sphere of radius r {\displaystyle r} , which generalizes the area element of the 2 {\displaystyle 2} -sphere, is given by
Thus, the segment volume equals the sum of three volumes: two right circular cylinders one of radius a and the second of radius b (both of height /) and a sphere of radius /. The curved surface area of the spherical zone—which excludes the top and bottom bases—is given by =.
A sphere (from Greek σφαῖρα, sphaîra) [1] is a geometrical object that is a three-dimensional analogue to a two-dimensional circle.Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. [2]