Search results
Results from the WOW.Com Content Network
Given a 3 × 3 rotation matrix R, a vector u parallel to the rotation axis must satisfy =, since the rotation of u around the rotation axis must result in u. The equation above may be solved for u which is unique up to a scalar factor unless R = I. Further, the equation may be rewritten
The Rodrigues vector (sometimes called the Gibbs vector, with coordinates called Rodrigues parameters) [3] [4] can be expressed in terms of the axis and angle of the rotation as follows: = ^ This representation is a higher-dimensional analog of the gnomonic projection , mapping unit quaternions from a 3-sphere onto the 3-dimensional pure ...
In the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation. By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3) , the group of all rotation matrices ...
3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]
Rotation is given by ′ (′ + ′ + ′) = † = (+ +) (+ + +), which it can be confirmed by multiplying out gives the Euler–Rodrigues formula as stated above. Thus, the Euler parameters are the real and imaginary coordinates in an SU(2) matrix corresponding to an element of the spin group Spin(3), which maps by a double cover mapping to a ...
The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...
where q is the versor, q −1 is its inverse, and x is the vector treated as a quaternion with zero scalar part. The quaternion can be related to the rotation vector form of the axis angle rotation by the exponential map over the quaternions, = /, where v is the rotation vector treated as a quaternion.
Spatial rotations in three dimensions can be parametrized using both Euler angles and unit quaternions.This article explains how to convert between the two representations. Actually this simple use of "quaternions" was first presented by Euler some seventy years earlier than Hamilton to solve the problem of magic squar