Search results
Results from the WOW.Com Content Network
The plane of Earth's equator, when projected outwards to the celestial sphere, defines the celestial equator. In the cycle of Earth's seasons, the equatorial plane runs through the Sun twice a year: on the equinoxes in March and September. To a person on Earth, the Sun appears to travel along the equator (or along the celestial equator) at ...
A solar equinox is a moment in time when the Sun crosses the Earth's equator, which is to say, appears directly above the equator, rather than north or south of the equator. On the day of the equinox, the Sun appears to rise "due east" and set "due west". This occurs twice each year, around 20 March and 23 September. [a]
The solar equator is the latitude on Earth at which the Sun is observed directly overhead at midday. [1] Due to the obliquity of Earth's axis, the solar equator varies during the year, from the Tropic of Capricorn on the December solstice to the Tropic of Cancer on the June solstice.
The Sun rotates faster at its equator than at its poles. This differential rotation is caused by convective motion due to heat transport and the Coriolis force due to the Sun's rotation. In a frame of reference defined by the stars, the rotational period is approximately 25.6 days at the equator and 33.5 days at the poles.
In astronomy, an equinox is either of two places on the celestial sphere at which the ecliptic intersects the celestial equator. [1] [2] [3] Although there are two such intersections, the equinox associated with the Sun's ascending node is used as the conventional origin of celestial coordinate systems and referred to simply as "the equinox".
As the Earth travels around the sun, it does so at an angle. The equinox arrives on Saturday, marking the start of the fall season for the Northern Hemisphere. Here's what to know about how we ...
At the equator, the solar rotation period is 24.47 days. This is called the sidereal rotation period, and should not be confused with the synodic rotation period of 26.24 days, which is the time for a fixed feature on the Sun to rotate to the same apparent position as viewed from Earth (the Earth's orbital rotation is in the same direction as the Sun's rotation).
On a prograde planet like the Earth, the sidereal day is shorter than the solar day. At time 1, the Sun and a certain distant star are both overhead. At time 2, the planet has rotated 360° and the distant star is overhead again (1→2 = one sidereal day). But it is not until a little later, at time 3, that the Sun is overhead again (1→3 = one solar day). More simply, 1→2 is a complete ...