enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gauss sum - Wikipedia

    en.wikipedia.org/wiki/Gauss_sum

    The case originally considered by Carl Friedrich Gauss was the quadratic Gauss sum, for R the field of residues modulo a prime number p, and χ the Legendre symbol.In this case Gauss proved that G(χ) = p 1 ⁄ 2 or ip 1 ⁄ 2 for p congruent to 1 or 3 modulo 4 respectively (the quadratic Gauss sum can also be evaluated by Fourier analysis as well as by contour integration).

  3. 1 + 2 + 3 + 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    Most of the more elementary definitions of the sum of a divergent series are stable and linear, and any method that is both stable and linear cannot sum 1 + 2 + 3 + ⋯ to a finite value (see § Heuristics below). More advanced methods are required, such as zeta function regularization or Ramanujan summation.

  4. Gaussian integer - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integer

    The Gaussian integers are the set [1] [] = {+,}, =In other words, a Gaussian integer is a complex number such that its real and imaginary parts are both integers.Since the Gaussian integers are closed under addition and multiplication, they form a commutative ring, which is a subring of the field of complex numbers.

  5. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    Fermat's theorem on sums of two squares is strongly related with the theory of Gaussian primes.. A Gaussian integer is a complex number + such that a and b are integers. The norm (+) = + of a Gaussian integer is an integer equal to the square of the absolute value of the Gaussian integer.

  6. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    According to an anecdote of uncertain reliability, [1] in primary school Carl Friedrich Gauss reinvented the formula (+) for summing the integers from 1 through , for the case =, by grouping the numbers from both ends of the sequence into pairs summing to 101 and multiplying by the number of pairs. Regardless of the truth of this story, Gauss ...

  7. Legendre's three-square theorem - Wikipedia

    en.wikipedia.org/wiki/Legendre's_three-square...

    Previously, in 1801, Gauss had obtained a more general result, [6] containing Legendre's theorem of 1797–8 as a corollary. In particular, Gauss counted the number of solutions of the expression of an integer as a sum of three squares, and this is a generalisation of yet another result of Legendre, [7] whose proof is incomplete. This last fact ...

  8. Quadratic Gauss sum - Wikipedia

    en.wikipedia.org/wiki/Quadratic_Gauss_sum

    In number theory, quadratic Gauss sums are certain finite sums of roots of unity. A quadratic Gauss sum can be interpreted as a linear combination of the values of the complex exponential function with coefficients given by a quadratic character; for a general character, one obtains a more general Gauss sum.

  9. Carl Friedrich Gauss - Wikipedia

    en.wikipedia.org/wiki/Carl_Friedrich_Gauss

    This is an accepted version of this page This is the latest accepted revision, reviewed on 8 February 2025. German mathematician, astronomer, geodesist, and physicist (1777–1855) "Gauss" redirects here. For other uses, see Gauss (disambiguation). Carl Friedrich Gauss Portrait by Christian Albrecht Jensen, 1840 (copy from Gottlieb Biermann, 1887) Born Johann Carl Friedrich Gauss (1777-04-30 ...