Search results
Results from the WOW.Com Content Network
The case originally considered by Carl Friedrich Gauss was the quadratic Gauss sum, for R the field of residues modulo a prime number p, and χ the Legendre symbol.In this case Gauss proved that G(χ) = p 1 ⁄ 2 or ip 1 ⁄ 2 for p congruent to 1 or 3 modulo 4 respectively (the quadratic Gauss sum can also be evaluated by Fourier analysis as well as by contour integration).
In number theory, quadratic Gauss sums are certain finite sums of roots of unity. A quadratic Gauss sum can be interpreted as a linear combination of the values of the complex exponential function with coefficients given by a quadratic character; for a general character, one obtains a more general Gauss sum.
In mathematics, the Gross–Koblitz formula, introduced by Gross and Koblitz expresses a Gauss sum using a product of values of the p-adic gamma function. It is an analog of the Chowla–Selberg formula for the usual gamma function. It implies the Hasse–Davenport relation and generalizes the Stickelberger theorem.
The Hasse–Davenport relations, introduced by Davenport and Hasse , are two related identities for Gauss sums, one called the Hasse–Davenport lifting relation, and the other called the Hasse–Davenport product relation. The Hasse–Davenport lifting relation is an equality in number theory relating Gauss sums over different fields.
In mathematics, an elliptic Gauss sum is an analog of a Gauss sum depending on an elliptic curve with complex multiplication. The quadratic residue symbol in a Gauss sum is replaced by a higher residue symbol such as a cubic or quartic residue symbol, and the exponential function in a Gauss sum is replaced by an elliptic function.
Since the discrete logarithm problem reduces to Gauss sum estimation, an efficient classical algorithm for estimating Gauss sums would imply an efficient classical algorithm for computing discrete logarithms, which is considered unlikely. However, quantum computers can estimate Gauss sums to polynomial precision in polynomial time. [13]
This is an accepted version of this page This is the latest accepted revision, reviewed on 8 February 2025. German mathematician, astronomer, geodesist, and physicist (1777–1855) "Gauss" redirects here. For other uses, see Gauss (disambiguation). Carl Friedrich Gauss Portrait by Christian Albrecht Jensen, 1840 (copy from Gottlieb Biermann, 1887) Born Johann Carl Friedrich Gauss (1777-04-30 ...
All these extensions are also called normal or Gaussian laws, so a certain ambiguity in names exists. The multivariate normal distribution describes the Gaussian law in the k-dimensional Euclidean space. A vector X ∈ R k is multivariate-normally distributed if any linear combination of its components Σ k j=1 a j X j has a (univariate) normal ...