Search results
Results from the WOW.Com Content Network
Quantities, Units and Symbols in Physical Chemistry, also known as the Green Book, is a compilation of terms and symbols widely used in the field of physical chemistry. It also includes a table of physical constants , tables listing the properties of elementary particles , chemical elements , and nuclides , and information about conversion ...
The free energy change, dG r, can be expressed as a weighted sum of change in amount times the chemical potential, the partial molar free energy of the species. The chemical potential, μ i, of the ith species in a chemical reaction is the partial derivative of the free energy with respect to the number of moles of that species, N i
Usually the symbol for the quantity with a subscript of some reference to the quantity is used, or the quantity is written with the reference to the chemical in round brackets. For example, the mass of water might be written in subscripts as m H 2 O , m water , m aq , m w (if clear from context) etc., or simply as m (H 2 O).
Equilibrium chemistry is concerned with systems in chemical equilibrium. The unifying principle is that the free energy of a system at equilibrium is the minimum possible, so that the slope of the free energy with respect to the reaction coordinate is zero.
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
The use of k atomic element conservation equations for the mass constraint is straightforward, and replaces the use of the stoichiometric coefficient equations. [19] The results are consistent with those specified by chemical equations. For example, if equilibrium is specified by a single chemical equation:, [24]
In chemistry, biochemistry, and pharmacology, a dissociation constant (K D) is a specific type of equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex falls apart into its component molecules, or when a salt splits up into its component ions.
The molality of a solution does not change with , since it refers to the mass of the solvent. In contrast, the concentration does change with , since the density of a solution and thus its volume are temperature-dependent. Defining the aqueous-phase composition via molality has the advantage that any temperature dependence of the Henry's law ...