enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Log-linear analysis - Wikipedia

    en.wikipedia.org/wiki/Log-linear_analysis

    Log-linear analysis is a technique used in statistics to examine the relationship between more than two categorical variables. The technique is used for both hypothesis testing and model building. In both these uses, models are tested to find the most parsimonious (i.e., least complex) model that best accounts for the variance in the observed ...

  3. Data transformation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Data_transformation...

    The reciprocal transformation, some power transformations such as the Yeo–Johnson transformation, and certain other transformations such as applying the inverse hyperbolic sine, can be meaningfully applied to data that include both positive and negative values [10] (the power transformation is invertible over all real numbers if λ is an odd ...

  4. Response modeling methodology - Wikipedia

    en.wikipedia.org/wiki/Response_Modeling_Methodology

    If the response data used to estimate the model contain values that change sign, or if the lowest response value is far from zero (for example, when data are left-truncated), a location parameter, L, may be added to the response so that the expressions for the quantile function and for the median become, respectively:

  5. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    Logistic regression is used in various fields, including machine learning, most medical fields, and social sciences. For example, the Trauma and Injury Severity Score (), which is widely used to predict mortality in injured patients, was originally developed by Boyd et al. using logistic regression. [6]

  6. Poisson regression - Wikipedia

    en.wikipedia.org/wiki/Poisson_regression

    In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. [1] Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters.

  7. Log-logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Log-logistic_distribution

    Another generalized log-logistic distribution is the log-transform of the metalog distribution, in which power series expansions in terms of are substituted for logistic distribution parameters and . The resulting log-metalog distribution is highly shape flexible, has simple closed form PDF and quantile function , can be fit to data with linear ...

  8. Log-linear model - Wikipedia

    en.wikipedia.org/wiki/Log-linear_model

    A log-linear plot or graph, which is a type of semi-log plot. Poisson regression for contingency tables, a type of generalized linear model . The specific applications of log-linear models are where the output quantity lies in the range 0 to ∞, for values of the independent variables X , or more immediately, the transformed quantities f i ( X ...

  9. Binary regression - Wikipedia

    en.wikipedia.org/wiki/Binary_regression

    The simplest direct probabilistic model is the logit model, which models the log-odds as a linear function of the explanatory variable or variables. The logit model is "simplest" in the sense of generalized linear models (GLIM): the log-odds are the natural parameter for the exponential family of the Bernoulli distribution, and thus it is the simplest to use for computations.