enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Marginal distribution - Wikipedia

    en.wikipedia.org/wiki/Marginal_distribution

    In probability theory and statistics, the marginal distribution of a subset of a collection of random variables is the probability distribution of the variables contained in the subset. It gives the probabilities of various values of the variables in the subset without reference to the values of the other variables.

  3. Copula (statistics) - Wikipedia

    en.wikipedia.org/wiki/Copula_(statistics)

    In probability theory and statistics, a copula is a multivariate cumulative distribution function for which the marginal probability distribution of each variable is uniform on the interval [0, 1]. Copulas are used to describe/model the dependence (inter-correlation) between random variables. [1]

  4. Probability theory - Wikipedia

    en.wikipedia.org/wiki/Probability_theory

    Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations , probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms .

  5. Law of total probability - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_probability

    In probability theory, the law (or formula) of total probability is a fundamental rule relating marginal probabilities to conditional probabilities. It expresses the total probability of an outcome which can be realized via several distinct events , hence the name.

  6. Joint probability distribution - Wikipedia

    en.wikipedia.org/wiki/Joint_probability_distribution

    In general, the marginal probability distribution of X can be determined from the joint probability distribution of X and other random variables. If the joint probability density function of random variable X and Y is , (,), the marginal probability density function of X and Y, which defines the marginal distribution, is given by: =, (,)

  7. Coupling (probability) - Wikipedia

    en.wikipedia.org/wiki/Coupling_(probability)

    In probability theory, coupling is a proof technique that allows one to compare two unrelated random variables (distributions) X and Y by creating a random vector W whose marginal distributions correspond to X and Y respectively.

  8. Multivariate random variable - Wikipedia

    en.wikipedia.org/wiki/Multivariate_random_variable

    The distributions of each of the component random variables are called marginal distributions. The conditional probability distribution of X i {\displaystyle X_{i}} given X j {\displaystyle X_{j}} is the probability distribution of X i {\displaystyle X_{i}} when X j {\displaystyle X_{j}} is known to be a particular value.

  9. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    The probability content of the multivariate normal in a quadratic domain defined by () = ′ + ′ + > (where is a matrix, is a vector, and is a scalar), which is relevant for Bayesian classification/decision theory using Gaussian discriminant analysis, is given by the generalized chi-squared distribution. [17] The probability content within ...