enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]

  3. Direct comparison test - Wikipedia

    en.wikipedia.org/wiki/Direct_comparison_test

    In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.

  4. Limit of a sequence - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_sequence

    If such a limit exists and is finite, the sequence is called convergent. [2] A sequence that does not converge is said to be divergent. [3] The limit of a sequence is said to be the fundamental notion on which the whole of mathematical analysis ultimately rests. [1]

  5. Limit comparison test - Wikipedia

    en.wikipedia.org/wiki/Limit_comparison_test

    If diverges and converges, then necessarily =, that is, =. The essential content here is that in some sense the numbers a n {\displaystyle a_{n}} are larger than the numbers b n {\displaystyle b_{n}} .

  6. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    A series is convergent (or converges) if and only if the sequence (,,, … ) {\displaystyle (S_{1},S_{2},S_{3},\dots )} of its partial sums tends to a limit ; that means that, when adding one a k {\displaystyle a_{k}} after the other in the order given by the indices , one gets partial sums that become closer and closer to a given number.

  7. nth-term test - Wikipedia

    en.wikipedia.org/wiki/Nth-term_test

    When testing if a series converges or diverges, this test is often checked first due to its ease of use. In the case of p-adic analysis the term test is a necessary and sufficient condition for convergence due to the non-Archimedean ultrametric triangle inequality .

  8. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    One way to prove divergence is to compare the harmonic series with another divergent series, where each denominator is replaced with the next-largest power of two: + + + + + + + + + + + + + + + + + + Grouping equal terms shows that the second series diverges (because every grouping of convergent series is only convergent ...

  9. Cauchy's convergence test - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_convergence_test

    Cauchy's convergence test can only be used in complete metric spaces (such as and ), which are spaces where all Cauchy sequences converge. This is because we need only show that its elements become arbitrarily close to each other after a finite progression in the sequence to prove the series converges.