enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    The infimum is, in a precise sense, dual to the concept of a supremum. Infima and suprema of real numbers are common special cases that are important in analysis, and especially in Lebesgue integration. However, the general definitions remain valid in the more abstract setting of order theory where arbitrary partially ordered sets are considered.

  3. Limit inferior and limit superior - Wikipedia

    en.wikipedia.org/wiki/Limit_inferior_and_limit...

    The supremum/superior/outer limit is a set that joins these accumulation sets together. That is, it is the union of all of the accumulation sets. When ordering by set inclusion, the supremum limit is the least upper bound on the set of accumulation points because it contains each of them. Hence, it is the supremum of the limit points.

  4. Least-upper-bound property - Wikipedia

    en.wikipedia.org/wiki/Least-upper-bound_property

    In mathematics, the least-upper-bound property (sometimes called completeness, supremum property or l.u.b. property) [1] is a fundamental property of the real numbers. More generally, a partially ordered set X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound (supremum) in X .

  5. Completeness (order theory) - Wikipedia

    en.wikipedia.org/wiki/Completeness_(order_theory)

    In the mathematical area of order theory, completeness properties assert the existence of certain infima or suprema of a given partially ordered set (poset). The most familiar example is the completeness of the real numbers. A special use of the term refers to complete partial orders or complete lattices. However, many other interesting notions ...

  6. Essential infimum and essential supremum - Wikipedia

    en.wikipedia.org/wiki/Essential_infimum_and...

    For example, if one takes the function () that is equal to zero everywhere except at = where () =, then the supremum of the function equals one. However, its essential supremum is zero since (under the Lebesgue measure ) one can ignore what the function does at the single point where f {\displaystyle f} is peculiar.

  7. Set-theoretic limit - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_limit

    In mathematics, the limit of a sequence of sets,, … (subsets of a common set ) is a set whose elements are determined by the sequence in either of two equivalent ways: (1) by upper and lower bounds on the sequence that converge monotonically to the same set (analogous to convergence of real-valued sequences) and (2) by convergence of a sequence of indicator functions which are themselves ...

  8. Pointwise convergence - Wikipedia

    en.wikipedia.org/wiki/Pointwise_convergence

    This concept is often contrasted with uniform convergence.To say that = means that {| () |:} =, where is the common domain of and , and stands for the supremum.That is a stronger statement than the assertion of pointwise convergence: every uniformly convergent sequence is pointwise convergent, to the same limiting function, but some pointwise convergent sequences are not uniformly convergent.

  9. Uniform norm - Wikipedia

    en.wikipedia.org/wiki/Uniform_norm

    For example, points (2, 0), (2, 1), and (2, 2) lie along the perimeter of a square and belong to the set of vectors whose sup norm is 2. In mathematical analysis , the uniform norm (or sup norm ) assigns, to real- or complex -valued bounded functions ⁠ f {\displaystyle f} ⁠ defined on a set ⁠ S {\displaystyle S} ⁠ , the non-negative number

  1. Related searches supremum vs infima in spanish meaning examples worksheet free template editable

    supremum vs infimasupremum and infimum
    infimum vs supremum examplessupremum vs infimum wikipedia