Search results
Results from the WOW.Com Content Network
An advantage of RANSAC is its ability to do robust estimation [3] of the model parameters, i.e., it can estimate the parameters with a high degree of accuracy even when a significant number of outliers are present in the data set. A disadvantage of RANSAC is that there is no upper bound on the time it takes to compute these parameters (except ...
The Hough transform as it is universally used today was invented by Richard Duda and Peter Hart in 1972, who called it a "generalized Hough transform" [3] after the related 1962 patent of Paul Hough. [ 4 ] [ 5 ] The transform was popularized in the computer vision community by Dana H. Ballard through a 1981 journal article titled " Generalizing ...
Hough transforms are techniques for object detection, a critical step in many implementations of computer vision, or data mining from images. Specifically, the Randomized Hough transform is a probabilistic variant to the classical Hough transform, and is commonly used to detect curves (straight line, circle, ellipse, etc.) [1] The basic idea of Hough transform (HT) is to implement a voting ...
English: This image shows the first step of the Hough transform, for three points and with five possible angle groupings. The leftmost image shows the first point being transformed. First, lines of different angles are plotted, all going through the first point. For each of the lines, the perpendicular which also bisects the origin is found.
The Hough transform [3] can be used to detect lines and the output is a parametric description of the lines in an image, for example ρ = r cos(θ) + c sin(θ). [1] If there is a line in a row and column based image space, it can be defined ρ, the distance from the origin to the line along a perpendicular to the line, and θ, the angle of the perpendicular projection from the origin to the ...
The Hough transform was initially developed to detect analytically defined shapes (e.g., line, circle, ellipse etc.). In these cases, we have knowledge of the shape and aim to find out its location and orientation in the image. This modification enables the Hough transform to be used to detect an arbitrary object described with its model.
Jacobi transform; Laguerre transform; Laplace transform. Inverse Laplace transform; Two-sided Laplace transform; Inverse two-sided Laplace transform; Laplace–Carson transform; Laplace–Stieltjes transform; Legendre transform; Linear canonical transform; Mellin transform. Inverse Mellin transform; Poisson–Mellin–Newton cycle; N-transform ...
The determination of consistent clusters is performed rapidly by using an efficient hash table implementation of the generalised Hough transform. Each cluster of 3 or more features that agree on an object and its pose is then subject to further detailed model verification and subsequently outliers are discarded. Finally the probability that a ...