enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hugging Face - Wikipedia

    en.wikipedia.org/wiki/Hugging_Face

    The company was named after the U+1F917 珞 HUGGING FACE emoji. [2] After open sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised US$40 million in a Series B funding round. [3]

  3. Examples of Markov chains - Wikipedia

    en.wikipedia.org/wiki/Examples_of_Markov_chains

    The matrix P represents the weather model in which a sunny day is 90% likely to be followed by another sunny day, and a rainy day is 50% likely to be followed by another rainy day. [4] The columns can be labelled "sunny" and "rainy", and the rows can be labelled in the same order. The above matrix as a graph.

  4. Decomposition of time series - Wikipedia

    en.wikipedia.org/wiki/Decomposition_of_time_series

    An additive model would be used when the variations around the trend do not vary with the level of the time series whereas a multiplicative model would be appropriate if the trend is proportional to the level of the time series. [3] Sometimes the trend and cyclical components are grouped into one, called the trend-cycle component.

  5. Time series - Wikipedia

    en.wikipedia.org/wiki/Time_series

    An additional set of extensions of these models is available for use where the observed time-series is driven by some "forcing" time-series (which may not have a causal effect on the observed series): the distinction from the multivariate case is that the forcing series may be deterministic or under the experimenter's control.

  6. Autoregressive integrated moving average - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_integrated...

    In time series analysis used in statistics and econometrics, autoregressive integrated moving average (ARIMA) and seasonal ARIMA (SARIMA) models are generalizations of the autoregressive moving average (ARMA) model to non-stationary series and periodic variation, respectively.

  7. These models are useful in modeling time series with long memory—that is, in which deviations from the long-run mean decay more slowly than an exponential decay. The acronyms "ARFIMA" or "FARIMA" are often used, although it is also conventional to simply extend the "ARIMA( p , d , q )" notation for models, by simply allowing the order of ...

  8. Bayesian structural time series - Wikipedia

    en.wikipedia.org/.../Bayesian_structural_time_series

    Bayesian structural time series (BSTS) model is a statistical technique used for feature selection, time series forecasting, nowcasting, inferring causal impact and other applications. The model is designed to work with time series data. The model has also promising application in the field of analytical marketing. In particular, it can be used ...

  9. Moving-average model - Wikipedia

    en.wikipedia.org/wiki/Moving-average_model

    In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. [ 1 ] [ 2 ] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable.