Search results
Results from the WOW.Com Content Network
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). [1] The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2]
The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...
The conjugate transpose of a matrix with real entries reduces to the transpose of , as the conjugate of a real number is the number itself. The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by 2 × 2 {\displaystyle 2\times 2} real matrices, obeying matrix addition and multiplication: a + i b ≡ ...
For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal. For such matrices, the half-vectorization is sometimes more useful than the ...
MATLAB (an abbreviation of ... and 9. That is, the array starts at 1 ... Transposing a vector or a matrix is done either by the function transpose or by adding dot ...
The vector space of matrices over is denoted by . For A ∈ K m × n {\displaystyle A\in \mathbb {K} ^{m\times n}} , the transpose is denoted A T {\displaystyle A^{\mathsf {T}}} and the Hermitian transpose (also called conjugate transpose ) is denoted A ∗ {\displaystyle A^{*}} .
In mathematics, especially in linear algebra and matrix theory, the commutation matrix is used for transforming the vectorized form of a matrix into the vectorized form of its transpose. Specifically, the commutation matrix K (m,n) is the nm × mn permutation matrix which, for any m × n matrix A, transforms vec(A) into vec(A T): K (m,n) vec(A ...
The last row of is the vector shifted by one in reverse. Different sources define the circulant matrix in different ways, for example as above, or with the vector c {\displaystyle c} corresponding to the first row rather than the first column of the matrix; and possibly with a different direction of shift (which is sometimes called an anti ...