enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 3-sphere - Wikipedia

    en.wikipedia.org/wiki/3-sphere

    Direct projection of 3-sphere into 3D space and covered with surface grid, showing structure as stack of 3D spheres (2-spheres) In mathematics, a hypersphere or 3-sphere is a 4-dimensional analogue of a sphere, and is the 3-dimensional n-sphere. In 4-dimensional Euclidean space, it is the set of points equidistant from a fixed central point.

  3. Clifford torus - Wikipedia

    en.wikipedia.org/wiki/Clifford_torus

    The six-dimensional group O(4) acts transitively on the space of all such Clifford tori sitting inside the 3-sphere. However, this action has a two-dimensional stabilizer (see group action ) since rotation in the meridional and longitudinal directions of a torus preserves the torus (as opposed to moving it to a different torus).

  4. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    S ‍ 3: a 3-sphere is a sphere in 4-dimensional Euclidean space. Spheres for n > 2 are sometimes called hyperspheres. The n-sphere of unit radius centered at the origin is denoted S ‍ n and is often referred to as "the" n-sphere. The ordinary sphere is a 2-sphere, because it is a 2-dimensional surface which is embedded in 3-dimensional space.

  5. n-sphere - Wikipedia

    en.wikipedia.org/wiki/N-sphere

    In mathematics, an n-sphere or hypersphere is an ⁠ ⁠-dimensional generalization of the ⁠ ⁠-dimensional circle and ⁠ ⁠-dimensional sphere to any non-negative integer ⁠ ⁠. The circle is considered 1-dimensional, and the sphere 2-dimensional, because the surfaces themselves are 1- and 2-dimensional respectively, not because they ...

  6. Hypersurface - Wikipedia

    en.wikipedia.org/wiki/Hypersurface

    In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface.A hypersurface is a manifold or an algebraic variety of dimension n − 1, which is embedded in an ambient space of dimension n, generally a Euclidean space, an affine space or a projective space. [1]

  7. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere.It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices.

  8. Poincaré conjecture - Wikipedia

    en.wikipedia.org/wiki/Poincaré_conjecture

    The two-dimensional analogue of the Poincaré conjecture says that any two-dimensional topological manifold which is closed and connected but non-homeomorphic to the two-dimensional sphere must possess a loop which cannot be continuously contracted to a point. (This is illustrated by the example of the torus, as above.)

  9. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]