enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Power (statistics) - Wikipedia

    en.wikipedia.org/wiki/Power_(statistics)

    An example of the relationship between sample size and power levels. Higher power requires larger sample sizes. Statistical power may depend on a number of factors. Some factors may be particular to a specific testing situation, but in normal use, power depends on the following three aspects that can be potentially controlled by the practitioner:

  3. Uniformly most powerful test - Wikipedia

    en.wikipedia.org/wiki/Uniformly_most_powerful_test

    In statistical hypothesis testing, a uniformly most powerful (UMP) test is a hypothesis test which has the greatest power among all possible tests of a given size α.For example, according to the Neyman–Pearson lemma, the likelihood-ratio test is UMP for testing simple (point) hypotheses.

  4. List of statistical tests - Wikipedia

    en.wikipedia.org/wiki/List_of_statistical_tests

    Statistical tests are used to test the fit between a hypothesis and the data. [1] [2] Choosing the right statistical test is not a trivial task. [1] The choice of the test depends on many properties of the research question. The vast majority of studies can be addressed by 30 of the 100 or so statistical tests in use. [3] [4] [5]

  5. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    Sample sizes may be evaluated by the quality of the resulting estimates, as follows. It is usually determined on the basis of the cost, time or convenience of data collection and the need for sufficient statistical power. For example, if a proportion is being estimated, one may wish to have the 95% confidence interval be

  6. Student's t-test - Wikipedia

    en.wikipedia.org/wiki/Student's_t-test

    In the presence of an outlier, the t-test is not robust. For example, for two independent samples when the data distributions are asymmetric (that is, the distributions are skewed) or the distributions have large tails, then the Wilcoxon rank-sum test (also known as the Mann–Whitney U test) can have three to four times higher power than the t ...

  7. Neyman–Pearson lemma - Wikipedia

    en.wikipedia.org/wiki/Neyman–Pearson_lemma

    In practice, the likelihood ratio is often used directly to construct tests — see likelihood-ratio test.However it can also be used to suggest particular test-statistics that might be of interest or to suggest simplified tests — for this, one considers algebraic manipulation of the ratio to see if there are key statistics in it related to the size of the ratio (i.e. whether a large ...

  8. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    The above image shows a table with some of the most common test statistics and their corresponding tests or models. A statistical hypothesis test is a method of statistical inference used to decide whether the data sufficiently supports a particular hypothesis. A statistical hypothesis test typically involves a calculation of a test statistic.

  9. Noncentral distribution - Wikipedia

    en.wikipedia.org/wiki/Noncentral_distribution

    This leads to their use in calculating statistical power. If the noncentrality parameter of a distribution is zero, the distribution is identical to a distribution in the central family. [1] For example, the Student's t-distribution is the central family of distributions for the noncentral t-distribution family.