Search results
Results from the WOW.Com Content Network
A conical combination is a linear combination with nonnegative coefficients. When a point is to be used as the reference origin for defining displacement vectors, then is a convex combination of points ,, …, if and only if the zero displacement is a non-trivial conical combination of their respective displacement vectors relative to .
Consider the vectors (polynomials) p 1 := 1, p 2 := x + 1, and p 3 := x 2 + x + 1. Is the polynomial x 2 − 1 a linear combination of p 1, p 2, and p 3? To find out, consider an arbitrary linear combination of these vectors and try to see when it equals the desired vector x 2 − 1. Picking arbitrary coefficients a 1, a 2, and a 3, we want
In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually Euclidean vectors.The name "triple product" is used for two different products, the scalar-valued scalar triple product and, less often, the vector-valued vector triple product.
Given two homogeneous polynomials P(x, y) and Q(x, y) of respective total degrees p and q, their homogeneous resultant is the determinant of the matrix over the monomial basis of the linear map (,) +, where A runs over the bivariate homogeneous polynomials of degree q − 1, and B runs over the homogeneous polynomials of degree p − 1. In ...
The elements x 1, ..., x n can also be points of a Euclidean space, and, more generally, of an affine space over a field K. In this case the α i {\displaystyle \alpha _{i}} are elements of K (or R {\displaystyle \mathbb {R} } for a Euclidean space), and the affine combination is also a point.
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, . [1] The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.
However, there are exceptions to this rule. For example, the subspace of K 3 spanned by the three vectors (1, 0, 0), (0, 0, 1), and (2, 0, 3) is just the xz-plane, with each point on the plane described by infinitely many different values of t 1, t 2, t 3. In general, vectors v 1, ... , v k are called linearly independent if