enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Enzyme kinetics - Wikipedia

    en.wikipedia.org/wiki/Enzyme_kinetics

    The two important properties of enzyme kinetics are how easily the enzyme can be saturated with a substrate, and the maximum rate it can achieve. Knowing these properties suggests what an enzyme might do in the cell and can show how the enzyme will respond to changes in these conditions.

  3. Reversible Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Reversible_Michaelis...

    Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life. The study of how fast an enzyme can transform a substrate into a product is called enzyme kinetics. The rate of reaction of many chemical reactions shows a linear response as function of the concentration of substrate molecules.

  4. Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Michaelis–Menten_kinetics

    A decade before Michaelis and Menten, Victor Henri found that enzyme reactions could be explained by assuming a binding interaction between the enzyme and the substrate. [11] His work was taken up by Michaelis and Menten, who investigated the kinetics of invertase, an enzyme that catalyzes the hydrolysis of sucrose into glucose and fructose. [12]

  5. Linear biochemical pathway - Wikipedia

    en.wikipedia.org/wiki/Linear_biochemical_pathway

    Another way to understand the properties of a linear pathway is to take a more analytical approach. Analytical solutions can be derived for the steady-state if simple mass-action kinetics are assumed. [2] [3] [4] Analytical solutions for the steady-state when assuming Michaelis-Menten kinetics can be obtained [5] [6] but are quite often avoided ...

  6. Category:Enzyme kinetics - Wikipedia

    en.wikipedia.org/wiki/Category:Enzyme_kinetics

    Pages in category "Enzyme kinetics" The following 39 pages are in this category, out of 39 total. This list may not reflect recent changes. ...

  7. Specificity constant - Wikipedia

    en.wikipedia.org/wiki/Specificity_constant

    A comparison of specificity constants can also be used as a measure of the preference of an enzyme for different substrates (i.e., substrate specificity). The higher the specificity constant, the more the enzyme "prefers" that substrate. [1] The following equation, known as the Michaelis–Menten model, is used to describe the kinetics of enzymes:

  8. Non-competitive inhibition - Wikipedia

    en.wikipedia.org/wiki/Non-competitive_inhibition

    The enzyme involved in this reaction is called invertase, and it is the enzyme the kinetics of which have been supported by Michaelis and Menten to be revolutionary for the kinetics of other enzymes. While expressing the rate of the reaction studied, they derived an equation that described the rate in a way which suggested that it is mostly ...

  9. Diffusion-limited enzyme - Wikipedia

    en.wikipedia.org/wiki/Diffusion-limited_enzyme

    The rate of the enzyme-catalysed reaction is limited by diffusion and so the enzyme 'processes' the substrate well before it encounters another molecule. [1] Some enzymes operate with kinetics which are faster than diffusion rates, which would seem to be impossible. Several mechanisms have been invoked to explain this phenomenon.