Search results
Results from the WOW.Com Content Network
David Chapman [3] and Émile Jouguet [4] originally (c. 1900) stated the condition for an infinitesimally thin detonation. A physical interpretation of the condition is usually based on the later modelling (c. 1943) by Yakov Borisovich Zel'dovich , [ 5 ] John von Neumann , [ 6 ] and Werner Döring [ 7 ] (the so-called ZND detonation model ).
Detonation (from Latin detonare 'to thunder down/forth') [1] is a type of combustion involving a supersonic exothermic front accelerating through a medium that eventually drives a shock front propagating directly in front of it.
When the device being tested is buried at sufficient depth, the nuclear explosion may be contained, with no release of radioactive materials to the atmosphere. The extreme heat and pressure of an underground nuclear explosion cause changes in the surrounding rock. The rock closest to the location of the test is vaporised, forming a cavity.
The detonation velocity values presented here are typically for the highest practical density which maximizes achievable detonation velocity. [ 1 ] The velocity of detonation is an important indicator for overall energy and power of detonation, and in particular for the brisance or shattering effect of an explosive which is due to the ...
The phenomenon is exploited in pulse detonation engines, because a detonation produces a more efficient combustion of the reactants than a deflagration does, i.e. giving a higher yields. Such engines typically employ a Shchelkin spiral in the combustion chamber to facilitate the deflagration to detonation transition. [2] [3]
When studying or discussing explosive safety, or the safety of systems containing explosives, the terms deflagration, detonation and deflagration-to-detonation transition (commonly referred to as DDT) must be understood and used appropriately to convey relevant information.
Typical detonation velocities for organic dust mixtures range from 1400 to 1650 m/s. [2] Gas explosions can either deflagrate or detonate based on confinement; detonation velocities are generally around 1700 m/s [3] [4] [5] but can be as high as 3000 m/s. [6] Solid explosives often have detonation velocities ranging beyond 4000 m/s to 10300 m/s.
TNT equivalent is a convention for expressing energy, typically used to describe the energy released in an explosion.The ton of TNT is a unit of energy defined by convention to be 4.184 gigajoules (1 gigacalorie), [1] which is the approximate energy released in the detonation of a metric ton (1,000 kilograms) of TNT.