Search results
Results from the WOW.Com Content Network
Irradiance is defined as power per unit area, so the solar luminosity (total power emitted by the Sun) is the irradiance received at the Earth (solar constant) multiplied by the area of the sphere whose radius is the mean distance between the Earth and the Sun: = where A is the unit distance (the value of the astronomical unit in metres) and k ...
Irradiance, a radiometric quantity, measured in watts per square meter (W/m 2) Intensity (physics), the name for irradiance used in other branches of physics (W/m 2) Radiance, commonly called "intensity" in astronomy and astrophysics (W·sr −1 ·m −2)
The global irradiance on a horizontal surface on Earth consists of the direct irradiance E e,dir and diffuse irradiance E e,diff. On a tilted plane, there is another irradiance component, E e,refl, which is the component that is reflected from the ground. The average ground reflection is about 20% of the global irradiance.
This integrated solar irradiance is called solar irradiation, solar radiation, solar exposure, solar insolation, or insolation. Irradiance may be measured in space or at the Earth's surface after atmospheric absorption and scattering. Irradiance in space is a function of distance from the Sun, the solar cycle, and cross-cycle changes. [2]
Luminosity is an absolute measure of radiated electromagnetic energy per unit time, and is synonymous with the radiant power emitted by a light-emitting object. [1] [2] In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a star, galaxy, or other astronomical objects. [3] [4]
The peak of the luminosity function is at 555 nm (green); the eye's image-forming visual system is more sensitive to light of this wavelength than any other. For monochromatic light of this wavelength , the amount of illuminance for a given amount of irradiance is maximum: 683.002 lx per 1 W/m 2 ; the irradiance needed to make 1 lx at this ...
Mathematically, for the spectral power distribution of a radiant exitance or irradiance one may write: =where M(λ) is the spectral irradiance (or exitance) of the light (SI units: W/m 2 = kg·m −1 ·s −3); Φ is the radiant flux of the source (SI unit: watt, W); A is the area over which the radiant flux is integrated (SI unit: square meter, m 2); and λ is the wavelength (SI unit: meter, m).
The luminosity of the Sun, L ⊙, is given by: = At Earth, this energy is passing through a sphere with a radius of a 0 , the distance between the Earth and the Sun, and the irradiance (received power per unit area) is given by E ⊕ = L ⊙ 4 π a 0 2 {\displaystyle E_{\oplus }={\frac {L_{\odot }}{4\pi a_{0}^{2}}}}