enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Restricted Boltzmann machine - Wikipedia

    en.wikipedia.org/wiki/Restricted_Boltzmann_machine

    Diagram of a restricted Boltzmann machine with three visible units and four hidden units (no bias units) A restricted Boltzmann machine (RBM) (also called a restricted Sherrington–Kirkpatrick model with external field or restricted stochastic Ising–Lenz–Little model) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs.

  3. Deeplearning4j - Wikipedia

    en.wikipedia.org/wiki/Deeplearning4j

    Eclipse Deeplearning4j is a programming library written in Java for the Java virtual machine (JVM). [ 2 ] [ 3 ] It is a framework with wide support for deep learning algorithms. [ 4 ] Deeplearning4j includes implementations of the restricted Boltzmann machine , deep belief net , deep autoencoder, stacked denoising autoencoder and recursive ...

  4. Softmax function - Wikipedia

    en.wikipedia.org/wiki/Softmax_function

    In statistical mechanics, the softargmax function is known as the Boltzmann distribution (or Gibbs distribution): [5]: 7 the index set , …, are the microstates of the system; the inputs are the energies of that state; the denominator is known as the partition function, often denoted by Z; and the factor β is called the coldness (or ...

  5. Feature learning - Wikipedia

    en.wikipedia.org/wiki/Feature_learning

    Restricted Boltzmann machines (RBMs) are often used as a building block for multilayer learning architectures. [ 6 ] [ 24 ] An RBM can be represented by an undirected bipartite graph consisting of a group of binary hidden variables , a group of visible variables, and edges connecting the hidden and visible nodes.

  6. Autoencoder - Wikipedia

    en.wikipedia.org/wiki/Autoencoder

    An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning).An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation.

  7. Nonlinear dimensionality reduction - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_dimensionality...

    An autoencoder is a feed-forward neural network ... possible through the use of restricted Boltzmann machines and stacked ... implemented in Python (code available ...

  8. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    The Boltzmann machine can be thought of as a noisy Hopfield network. It is one of the first neural networks to demonstrate learning of latent variables (hidden units). Boltzmann machine learning was at first slow to simulate, but the contrastive divergence algorithm speeds up training for Boltzmann machines and Products of Experts.

  9. Boltzmann machine - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_machine

    In this example there are 3 hidden units (blue) and 4 visible units (white). This is not a restricted Boltzmann machine. A Boltzmann machine, like a Sherrington–Kirkpatrick model, is a network of units with a total "energy" (Hamiltonian) defined for the overall network. Its units produce binary results.