Search results
Results from the WOW.Com Content Network
The following table lists the common coordinate systems in use by the astronomical community. The fundamental plane divides the celestial sphere into two equal hemispheres and defines the baseline for the latitudinal coordinates, similar to the equator in the geographic coordinate system.
The other two cover the equatorial region of the celestial sphere, from the declination of 30° south to 30° north. The two equatorial charts are mercator projections, one for the eastern hemisphere of the celestial sphere and one for the western hemisphere. Note that unlike familiar maps, east is shown to the left and west is shown to the right.
The celestial equator is currently inclined by about 23.44° to the ecliptic plane. The image shows the relations between Earth's axial tilt (or obliquity), rotation axis, and orbital plane. The celestial equator is the great circle of the imaginary celestial sphere on the same plane as the equator of Earth.
This page was last edited on 3 November 2021, at 12:38 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Ecliptic latitude or celestial latitude (symbols: heliocentric b, geocentric β), measures the angular distance of an object from the ecliptic towards the north (positive) or south (negative) ecliptic pole. For example, the north ecliptic pole has a celestial latitude of +90°. Ecliptic latitude for "fixed stars" is not affected by precession.
This description of the orientation of the reference frame is somewhat simplified; the orientation is not quite fixed. A slow motion of Earth's axis, precession, causes a slow, continuous turning of the coordinate system westward about the poles of the ecliptic, completing one circuit in about 26,000 years.
A diagram of a typical nautical sextant, a tool used in celestial navigation to measure the angle between two objects viewed by means of its optical sight. Celestial navigation, also known as astronavigation, is the practice of position fixing using stars and other celestial bodies that enables a navigator to accurately determine their actual current physical position in space or on the ...
The equatorial coordinate system on the celestial sphere. Star position is the apparent angular position of any given star in the sky, which seems fixed onto an arbitrary sphere centered on Earth. The location is defined by a pair of angular coordinates relative to the celestial equator: right ascension (α) and declination (δ).