Search results
Results from the WOW.Com Content Network
Photosystem I (PSI, or plastocyanin–ferredoxin oxidoreductase) is one of two photosystems in the photosynthetic light reactions of algae, plants, and cyanobacteria. Photosystem I [ 1 ] is an integral membrane protein complex that uses light energy to catalyze the transfer of electrons across the thylakoid membrane from plastocyanin to ...
Studies have actually demonstrated that the two wavelengths together have a synergistic effect on the photosynthetic activity, rather than an additive one. [ 1 ] Each photosystem has two parts: a reaction center, where the photochemistry occurs, and an antenna complex , which surrounds the reaction center.
The cyclic light-dependent reactions occur only when the sole photosystem being used is photosystem I. Photosystem I excites electrons which then cycle from the transport protein, ferredoxin (Fd), to the cytochrome complex, b 6 f, to another transport protein, plastocyanin (Pc), and back to photosystem I. A proton gradient is created across the ...
Photosystem II is present on the thylakoid membranes inside chloroplasts, the site of photosynthesis in green plants. [9] The structure of Photosystem II is remarkably similar to the bacterial reaction center, and it is theorized that they share a common ancestor. The core of Photosystem II consists of two subunits referred to as D1 and D2 ...
The cytochrome b 6 f complex is a dimer, with each monomer composed of eight subunits. [3] These consist of four large subunits: a 32 kDa cytochrome f with a c-type cytochrome, a 25 kDa cytochrome b 6 with a low- and high-potential heme group, a 19 kDa Rieske iron-sulfur protein containing a [2Fe-2S] cluster, and a 17 kDa subunit IV; along with four small subunits (3-4 kDa): PetG, PetL, PetM ...
Photosynthesis is a process where light is absorbed or harvested by pigment protein complexes which are able to turn sunlight into energy. [5] Absorption of a photon by a molecule takes place when pigment protein complexes harvest sunlight leading to electronic excitation delivered to the reaction centre where the process of charge separation can take place.
The photosystem II complex replaced its lost electrons from H 2 O, so electrons are not returned to photosystem II as they would in the analogous cyclic pathway. Instead, they are transferred to the photosystem I complex, which boosts their energy to a higher level using a second solar photon.
In photosynthesis, plastocyanin functions as an electron transfer agent between cytochrome f of the cytochrome b 6 f complex from photosystem II and P700+ from photosystem I. Cytochrome b 6 f complex and P700 + are both membrane-bound proteins with exposed residues on the lumen-side of the thylakoid membrane of chloroplasts. Cytochrome f acts ...