Search results
Results from the WOW.Com Content Network
Radon transform. Maps f on the (x, y)-domain to Rf on the (α, s)-domain.. In mathematics, the Radon transform is the integral transform which takes a function f defined on the plane to a function Rf defined on the (two-dimensional) space of lines in the plane, whose value at a particular line is equal to the line integral of the function over that line.
In practice of tomographic image reconstruction, often a stabilized and discretized version of the inverse Radon transform is used, known as the filtered back projection algorithm. [ 2 ] With a sampled discrete system, the inverse Radon transform is
Take a two-dimensional function f(r), project (e.g. using the Radon transform) it onto a (one-dimensional) line, and do a Fourier transform of that projection. Take that same function, but do a two-dimensional Fourier transform first, and then slice it through its origin, which is parallel to the projection line. In operator terms, if
In the mathematical field of integral geometry, the Funk transform (also known as Minkowski–Funk transform, Funk–Radon transform or spherical Radon transform) is an integral transform defined by integrating a function on great circles of the sphere. It was introduced by Paul Funk in 1911, based on the work of Minkowski (1904).
The Mojette transform is an application of discrete geometry. More specifically, it is a discrete and exact version of the Radon transform, thus a projection operator. The IRCCyN laboratory - UMR CNRS 6597 in Nantes, France has been developing it since 1994. The first characteristic of the Mojette transform is using only additions and subtractions.
Language links are at the top of the page across from the title.
The fourth is a modified wave-field transform base on frequency decomposition and slant stacking, performed by Xia et al. (2007). [9] The fifth is a high-resolution Linear Radon transformation performed by Luo et al. (2008). [10] In performing a wave-field transformation, a slant stack is done, followed by a Fourier transform. The way in which ...
In higher dimensions, the X-ray transform of a function is defined by integrating over lines rather than over hyperplanes as in the Radon transform. The X-ray transform derives its name from X-ray tomography (used in CT scans ) because the X-ray transform of a function ƒ represents the attenuation data of a tomographic scan through an ...