Search results
Results from the WOW.Com Content Network
The NTK can be studied for various ANN architectures, [2] in particular convolutional neural networks (CNNs), [19] recurrent neural networks (RNNs) and transformers. [20] In such settings, the large-width limit corresponds to letting the number of parameters grow, while keeping the number of layers fixed: for CNNs, this involves letting the number of channels grow.
In the mathematical theory of artificial neural networks, universal approximation theorems are theorems [1] [2] of the following form: Given a family of neural networks, for each function from a certain function space, there exists a sequence of neural networks ,, … from the family, such that according to some criterion.
Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning. The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.
In deep learning, fine-tuning is an approach to transfer learning in which the parameters of a pre-trained neural network model are trained on new data. [1] Fine-tuning can be done on the entire neural network, or on only a subset of its layers, in which case the layers that are not being fine-tuned are "frozen" (i.e., not changed during backpropagation). [2]
Algorithmic learning theory, from the work of E. Mark Gold; [7] Online machine learning, from the work of Nick Littlestone [citation needed]. While its primary goal is to understand learning abstractly, computational learning theory has led to the development of practical algorithms.
A residual neural network (also referred to as a residual network or ResNet) [1] is a deep learning architecture in which the layers learn residual functions with reference to the layer inputs. It was developed in 2015 for image recognition , and won the ImageNet Large Scale Visual Recognition Challenge ( ILSVRC ) of that year.
For example, there is a prototype, photonic, quantum memristive device for neuromorphic (quantum-)computers (NC)/artificial neural networks and NC-using quantum materials with some variety of potential neuromorphic computing-related applications, [366] [367] and quantum machine learning is a field with some variety of applications under ...
Ian J. Goodfellow (born 1987 [1]) is an American computer scientist, engineer, and executive, most noted for his work on artificial neural networks and deep learning.He is a research scientist at Google DeepMind, [2] was previously employed as a research scientist at Google Brain and director of machine learning at Apple, and has made several important contributions to the field of deep ...