Search results
Results from the WOW.Com Content Network
Keras was first independent software, then integrated into the TensorFlow library, and later supporting more. "Keras 3 is a full rewrite of Keras [and can be used] as a low-level cross-framework language to develop custom components such as layers, models, or metrics that can be used in native workflows in JAX, TensorFlow, or PyTorch — with ...
These models are compressed and optimized in order to be more efficient and have a higher performance on smaller capacity devices. [64] TensorFlow Lite uses FlatBuffers as the data serialization format for network models, eschewing the Protocol Buffers format used by standard TensorFlow models. [64]
The use of different model parameters and different corpus sizes can greatly affect the quality of a word2vec model. Accuracy can be improved in a number of ways, including the choice of model architecture (CBOW or Skip-Gram), increasing the training data set, increasing the number of vector dimensions, and increasing the window size of words ...
A structured general-purpose dataset on life, work, and death of 1.22 million distinguished people. Public domain. A five-step method to infer birth and death years, gender, and occupation from community-submitted data to all language versions of the Wikipedia project. 1,223,009 Text Regression, Classification 2022 Paper [258] Dataset [259]
Unsupervised learning is a framework in machine learning where, in contrast to supervised learning, algorithms learn patterns exclusively from unlabeled data. [1] Other frameworks in the spectrum of supervisions include weak- or semi-supervision, where a small portion of the data is tagged, and self-supervision.
The import and from statements, used to import modules whose functions or variables can be used in the current program; The match and case statements, an analog of the switch statement construct, that compares an expression against one or more cases as a control-of-flow measure.
Like earlier seq2seq models, the original transformer model used an encoder-decoder architecture. The encoder consists of encoding layers that process all the input tokens together one layer after another, while the decoder consists of decoding layers that iteratively process the encoder's output and the decoder's output tokens so far.
The torch package also simplifies object-oriented programming and serialization by providing various convenience functions which are used throughout its packages. The torch.class(classname, parentclass) function can be used to create object factories ().