enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    Also finding a basis for the column space of A is equivalent to finding a basis for the row space of the transpose matrix A T. To find the basis in a practical setting (e.g., for large matrices), the singular-value decomposition is typically used.

  3. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    A basis of the kernel of A consists in the non-zero columns of C such that the corresponding column of B is a zero column. In fact, the computation may be stopped as soon as the upper matrix is in column echelon form: the remainder of the computation consists in changing the basis of the vector space generated by the columns whose upper part is ...

  4. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    Mathematical applications of the SVD include computing the pseudoinverse, matrix approximation, and determining the rank, range, and null space of a matrix. The SVD is also extremely useful in all areas of science, engineering, and statistics, such as signal processing, least squares fitting of data, and process control.

  5. Basis (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Basis_(linear_algebra)

    A projective basis is + points in general position, in a projective space of dimension n. A convex basis of a polytope is the set of the vertices of its convex hull. A cone basis [5] consists of one point by edge of a polygonal cone. See also a Hilbert basis (linear programming).

  6. Kernel (algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(algebra)

    The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix. The kernel of a homomorphism is reduced to 0 (or 1) if and only if the homomorphism is injective, that is if the inverse image of every element consists of a single element. This means that the kernel can be viewed as a measure of the ...

  7. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Rank–nullity_theorem

    The second proof [6] looks at the homogeneous system =, where is a with rank, and shows explicitly that there exists a set of linearly independent solutions that span the null space of . While the theorem requires that the domain of the linear map be finite-dimensional, there is no such assumption on the codomain.

  8. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    If instead A is a complex square matrix, then there is a decomposition A = QR where Q is a unitary matrix (so the conjugate transpose † =). If A has n linearly independent columns, then the first n columns of Q form an orthonormal basis for the column space of A.

  9. Linear subspace - Wikipedia

    en.wikipedia.org/wiki/Linear_subspace

    The set of solutions to this equation is known as the null space of the matrix. For example, the subspace described above is the null space of the matrix = []. Every subspace of K n can be described as the null space of some matrix (see § Algorithms below for more).