enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Machine learning in physics - Wikipedia

    en.wikipedia.org/wiki/Machine_learning_in_physics

    A deep learning system was reported to learn intuitive physics from visual data (of virtual 3D environments) based on an unpublished approach inspired by studies of visual cognition in infants. [ 40 ] [ 39 ] Other researchers have developed a machine learning algorithm that could discover sets of basic variables of various physical systems and ...

  3. Physics-informed neural networks - Wikipedia

    en.wikipedia.org/wiki/Physics-informed_neural...

    Physics-informed neural networks for solving Navier–Stokes equations. Physics-informed neural networks (PINNs), [1] also referred to as Theory-Trained Neural Networks (TTNs), [2] are a type of universal function approximators that can embed the knowledge of any physical laws that govern a given data-set in the learning process, and can be described by partial differential equations (PDEs).

  4. Knowledge distillation - Wikipedia

    en.wikipedia.org/wiki/Knowledge_distillation

    In machine learning, knowledge distillation or model distillation is the process of transferring knowledge from a large model to a smaller one. While large models (such as very deep neural networks or ensembles of many models) have more knowledge capacity than small models, this capacity might not be fully utilized.

  5. COSMO solvation model - Wikipedia

    en.wikipedia.org/wiki/COSMO_solvation_model

    A method comparison [7] of COSMO and the integral equation formalism PCM (IEFPCM), which combines the exact dielectric boundary conditions with a reduced outlying charge error, showed that the differences between the methods are small as compared to deviations to experimental solvation data. The errors introduced by treating a solvent as a ...

  6. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]

  7. Natural language processing - Wikipedia

    en.wikipedia.org/wiki/Natural_language_processing

    Natural language processing (NLP) is a subfield of computer science and especially artificial intelligence.It is primarily concerned with providing computers with the ability to process data encoded in natural language and is thus closely related to information retrieval, knowledge representation and computational linguistics, a subfield of linguistics.

  8. Computational chemistry - Wikipedia

    en.wikipedia.org/wiki/Computational_chemistry

    Computational chemistry can help predict values like activation energy from catalysis. The presence of the catalyst opens a different reaction pathway (shown in red) with lower activation energy. The final result and the overall thermodynamics are the same. Computational chemistry is a tool for analyzing catalytic systems without doing experiments.

  9. Physical chemistry - Wikipedia

    en.wikipedia.org/wiki/Physical_chemistry

    Physical chemistry is the study of macroscopic and microscopic phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistical mechanics, analytical dynamics and chemical equilibria.