Search results
Results from the WOW.Com Content Network
Shuffling can also be implemented by a sorting algorithm, namely by a random sort: assigning a random number to each element of the list and then sorting based on the random numbers. This is generally not done in practice, however, and there is a well-known simple and efficient algorithm for shuffling: the Fisher–Yates shuffle .
When a column contains repeated values, sorting the column should maintain the original order of rows within each subset that shares the same value. This is known as stable sorting. As a result, multi-key sorting (sorting by primary, secondary, tertiary keys, etc.) can be achieved by sorting the least significant key first and the most ...
Timsort is a hybrid, stable sorting algorithm, derived from merge sort and insertion sort, designed to perform well on many kinds of real-world data.It was implemented by Tim Peters in 2002 for use in the Python programming language.
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
procedure heapsort(a, count) is input: an unordered array a of length count (Build the heap in array a so that largest value is at the root) heapify(a, count) (The following loop maintains the invariants that a[0:end−1] is a heap, and every element a[end:count−1] beyond end is greater than everything before it, i.e. a[end:count−1] is in ...
If the sort key values are totally ordered, the sort key defines a weak order of the items: items with the same sort key are equivalent with respect to sorting. See also stable sorting. If different items have different sort key values then this defines a unique order of the items. Workers sorting parcels in a postal facility
Therefore, the worst-case number of comparisons needed to select the second smallest is + ⌈ ⌉, the same number that would be obtained by holding a single-elimination tournament with a run-off tournament among the values that lost to the smallest value. However, the expected number of comparisons of a randomized selection algorithm can ...