enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lewis structure - Wikipedia

    en.wikipedia.org/wiki/Lewis_structure

    [1] [2] [3] Introduced by Gilbert N. Lewis in his 1916 article The Atom and the Molecule, a Lewis structure can be drawn for any covalently bonded molecule, as well as coordination compounds. [4] Lewis structures extend the concept of the electron dot diagram by adding lines between atoms to represent shared pairs in a chemical bond.

  3. Chemical bonding of water - Wikipedia

    en.wikipedia.org/wiki/Chemical_bonding_of_water

    As such, the predicted shape and bond angle of sp 3 hybridization is tetrahedral and 109.5°. This is in open agreement with the true bond angle of 104.45°. The difference between the predicted bond angle and the measured bond angle is traditionally explained by the electron repulsion of the two lone pairs occupying two sp 3 hybridized orbitals.

  4. Structural formula - Wikipedia

    en.wikipedia.org/wiki/Structural_formula

    Lewis structure is best used to calculate formal charges or how atoms bond to each other as both electrons and bonds are shown. Lewis structures give an idea of the molecular and electronic geometry which varies based on the presence of bonds and lone pairs and through this one could determine the bond angles and hybridization as well.

  5. Sulfur trioxide - Wikipedia

    en.wikipedia.org/wiki/Sulfur_trioxide

    The molecule SO 3 is trigonal planar.As predicted by VSEPR theory, its structure belongs to the D 3h point group.The sulfur atom has an oxidation state of +6 and may be assigned a formal charge value as low as 0 (if all three sulfur-oxygen bonds are assumed to be double bonds) or as high as +2 (if the Octet Rule is assumed). [7]

  6. Bent molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Bent_molecular_geometry

    Water (H 2 O) is an example of a bent molecule, as well as its analogues. The bond angle between the two hydrogen atoms is approximately 104.45°. [ 1 ] Nonlinear geometry is commonly observed for other triatomic molecules and ions containing only main group elements, prominent examples being nitrogen dioxide (NO 2 ), sulfur dichloride (SCl 2 ...

  7. Molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Molecular_geometry

    A bond angle is the geometric angle between two adjacent bonds. Some common shapes of simple molecules include: Linear: In a linear model, atoms are connected in a straight line. The bond angles are set at 180°. For example, carbon dioxide and nitric oxide have a linear molecular shape.

  8. Tetrahedral molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_molecular_geometry

    This angle may be calculated from the dot product of the two vectors, defined as a ⋅ b = ‖ a ‖ ‖ b ‖ cos θ where ‖ a ‖ denotes the length of vector a. As shown in the diagram, the dot product here is –1 and the length of each vector is √ 3, so that cos θ = – ⁠ 1 / 3 ⁠ and the tetrahedral bond angle θ = arccos ...

  9. Lone pair - Wikipedia

    en.wikipedia.org/wiki/Lone_pair

    [17] [18] The familiar alkynes have a carbon-carbon triple bond (bond order 3) and a linear geometry of 180° bond angles (figure A in reference [19]). However, further down in the group (silicon, germanium, and tin), formal triple bonds have an effective bond order 2 with one lone pair (figure B [19]) and trans-bent geometries.