Search results
Results from the WOW.Com Content Network
A straightforward algorithm to multiply numbers in Montgomery form is therefore to multiply aR mod N, bR mod N, and R′ as integers and reduce modulo N. For example, to multiply 7 and 15 modulo 17 in Montgomery form, again with R = 100, compute the product of 3 and 4 to get 12 as above.
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
Multiplication of two matrices is defined if and only if the number of columns of the left matrix is the same as the number of rows of the right matrix. That is, if A is an m × n matrix and B is an s × p matrix, then n needs to be equal to s for the matrix product AB to be defined.
Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, [10] even when the product remains defined after changing the order of the factors. [11] [12]
Naïve matrix multiplication requires one multiplication for each "1" of the left column. Each of the other columns (M1-M7) represents a single one of the 7 multiplications in the Strassen algorithm. The sum of the columns M1-M7 gives the same result as the full matrix multiplication on the left.
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
Decomposition: = where C is an m-by-r full column rank matrix and F is an r-by-n full row rank matrix Comment: The rank factorization can be used to compute the Moore–Penrose pseudoinverse of A , [ 2 ] which one can apply to obtain all solutions of the linear system A x = b {\displaystyle A\mathbf {x} =\mathbf {b} } .
Rule of Sarrus: The determinant of the three columns on the left is the sum of the products along the down-right diagonals minus the sum of the products along the up-right diagonals. In matrix theory , the rule of Sarrus is a mnemonic device for computing the determinant of a 3 × 3 {\displaystyle 3\times 3} matrix named after the French ...